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ON NONLINEAR DESINGULARIZATION 

BY M. S. BERGER1 AND L. E. FRAENKEL 

"Nonlinear desingularization" is an interesting, hitherto little studied phe­
nomenon in nonlinear elliptic partial differential equations. By nonlinear de­
singularization we mean that a linear boundary value problem whose solution 
possesses one or more isolated singularities is a degenerate form of a family of 
nonlinear problems whose solutions are smooth, and moreover converge to the 
singular solution of the linear system upon degeneration. Such phenomena oc­
cur commonly in various branches of theoretical physics. For example, in 
Helmholtz's famous study of vortex motion of ideal fluids [1], a circular vortex 
filament is used to approximate a steady vortex ring of small cross section. In 
that case the Stokes stream function of the vortex filament is the Green's func­
tion for the axisymmetric Laplace operator, and hence has a singularity, while 
the Stokes stream function for the vortex ring of small cross-section satisfies a 
nonlinear elliptic partial differential equation, and is smooth [2]. Similar phe­
nomena occur in the plasma physics of Tokomaks governed by the Lundquist 
equations, and in the onset of the "mixed state" [3] in type II superconductors 
associated with the Ginzberg-Landau equations. Moreover in [4], S. Adler has 
discussed how the nonlinear desingularization process leads to new classes of 
static Euclidean SU(2) Yang-Mills fields (monopoles) with unit Pontrajagin index. 

Mathematically speaking, nonlinear desingularization is a rather novel kind 
of bifurcation phenomenon involving parameter-dependent nonlinear problems. 
Indeed, we shall indicate in §3 below how our ideas on bifurcation, contained 
in [5], have an exact parallel in a typical situation of nonlinear desingularization. 

1. The nonlinear problem and its linear degenerate form. Let 12 be a 
bounded domain in the plane R2, with boundary 3£2, and let L be a formally 
self-adjoint, uniformly elliptic, second order operator, with smooth coefficients 
a(j(x) defined on 12 with the matrix (a^x)) positive definite and 

Then we consider the free boundary problem of finding a piecewise smooth 
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function u and a connected subdomain A of fi such that 

!

\f(x, u) on A, 

0 on a-A, 

u\bA = 0 and u\ha = -q0(x, R), u{x) is C1 across dA. 

Here #0(x, .R) is a given positive smooth function defined on 9fi x R+. The 
C1 function f(x, t) defined on fi x R+ is nonnegative, convex in t for fixed x 
and t > 0, and vanishes identically for t < 0. Moreover /(x, 0 satisfies a poly­
nomial growth condition as t —> °°, while as £ —• 0, ƒ(*, t) > Mtm for some 
fixed absolute positive constants M and m, with m > 1. The numbers X and R 
are positive parameters to be specified below. The smooth function q0(x, R) is 
uniformly bounded away from zero as the parameter R varies, but is allowed to 
tend to infinity at R —• 0. The special case f(x, t) — g(x)t can also be included. 

A linear limiting special case of this problem is obtained by supposing 
that A shrinks to a point a E fi in such a way that X fa f(x, u)dx remains fi­
nite, and tends to a limiting value c (say). Then the linear degenerate form of 
(1) would be 

(2) Lu = cb(x -a), u\ba= -q0(x, R) 

where 5(x - a) denotes the appropriate Dirac delta function. Thus the solution 
of (2) is the difference of two terms, one smooth term q(x, R) representing the 
L-harmonic extension of q0(x, R) into Q,, and another which is proportional to 
the Green's function G(xf a) of L relative to fi. 

It is convenient then to reformulate (1) in terms of the function U = u + 
q. Indeed (1) becomes 

LU=\f(x,U-q\ £ / l a a =0. 

The free boundary dA, then becomes the set of points in ^ where U — q and 
the set A = {xe£l\U>q}. 

2. The nonlinear desingularization theorem. To demonstrate the nonlinear 
desingularization phenomenon for (1) it is necessary to show that the Green's 
function solution of (2) referred to above is the degenerate limit of a family of 
smooth solutions to the full free boundary problem (1), by letting the para­
meters X and R vary. This fact is the content of the following result. 

THEOREM 1. Under the above hypotheses, there is a one parameter family 
of solutions (uR, XR) with uR G C1^) and connected subdomains AR of fi 
satisfying (1), as the parameter R varies over the positive real numbers. This 
family and the parameter R are characterized by the isoperimetric variational 
problem defined in (4) below. Moreover as R —• 0, (i) X# —• °°, (ii) the 
diameter of AR tends to 0, and (iii) setting hR = X̂  f f(x, uR)dx and 
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(3) *UR/hR-G(-,a(RWftij>(n)-^0 

where 1 < p < 2, and a(R) is any point in AR. 

REMARK. The statement (3) is sharp, in the sense that it is false if p = 2. 

3. On the proof of Theorem 1. The proof utilizes the method of "non­
linear descent" introduced in [5] for bifurcation problems. Instead of consider­
ing (1) as a nonlinear perturbation of (2), one uses global nonlinear methods to 
solve (1) and then considers the behaviour of the solutions of the nonlinear 
problems under the appropriate limiting operations. To solve the nonlinear 
problem (1) in this case we consider the isoperimetric variational problems 

( . [VR]: inf D[U] 
w ue^xR 

where 2R={U\Ueft1 >2(Î2), fa F(x, U-q)=R} with f(x, t) = Ft(x, t) and 
F(x9 0) = 0, and D[U] is the Dirichlet form associated with the operator L. Us­
ing the arguments of [2], we find that the critical points of this variational 
problem generate the desired one parameter family of solutions (uR, \R) for 
the free boundary problem (1). We then consider the behaviour of the solutions 
°f [VR] as R —> 0. To this end we show that as R —-» 0, the parameter XR in 
(1) tends to +°°. Moreover, setting 

AR = {x\x G £2, UR > q(x, R)} 

and cap (ÂR9 12) = inf^ D[u], where TR = {u E W12(£2), u > 1 on AR }, 
we show cap(^4^, £2) —• 0 as R —• 0. This implies that the diameter of AR 

tends to zero at a known rate [6], since 12 is a plane domain. The limit (3) 
then follows from Minkowski's inequality applied to an integral equation satis­
fied by (UR9 \R). 
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