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HOMOTOPY INVERSES FOR NERVE 

BY RUDOLF FRITSCH AND DANA MAY LATCH 

Whitehead [19] introduced the category of CW complexes as the appro­
priate category in which to do homotopy theory. Eilenberg, Mac Lane and 
Zilber ([1], [2]) defined the notion of simplicial set in the early 50's and Kan 
([5], [6], [7]) introduced the necessary conditions to do homotopy theory 
in this category. The equivalence of these categories under adjoint functors (see 
[14], [6], [5], [4]) played an important role in the development of geometric 
topology. In the late 60's, Quillen [16] used the notion of classifying space for 
a small category [17], and showed the importance of doing homotopy theory in 
the category of small categories. Latch [8] recently showed that the category of 
small categories and the category of simplicial sets were equivalent "up to homo­
topy," but not by using adjoint functors . In this paper, adjoint pairs are given 
and a general criteria for such adjoint functors to induce a "homotopy equiva­
lence" are announced. 

The homotopic category of K, the category of (semi-) simplicial sets, is 
equivalent to the homotopy category of W, the category of spaces of homotopy 
type of a CW complex [4, VII, 1 ] , via a pair of adjoint functors. Moreover, in 
[8], the homotopic categories of K and Cat, the category of small categories, are 
shown to be equivalent via the pair N: Cat —• K and r: fC —̂  Cat, where N is 
the standard embedding nerve functor and T is the category of simplices functor. 
As in the case for K and W, one would like to replace T by the left adjoint of 
nerve, categorical realization c: K —> Cat; however, c is "wildly wrong" with re­
spect to homotopy since it maps certain spheres to contractible categories. In 
this announcement, we give conditions for other "reasonable" functors from K to 
Cat to be (weak) homotopy inverses for nerve. The functor T: K —* Cat above 
and the functor A: K —• Cat used in [11] are examples of such homotopy in­
verses. 

We only consider functors from K to Cat having right adjoints. Under very 
weak homotopy conditions, these right adjoints are homotopy equivalent to nerve 
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[10]. In addition, we give hypotheses under which a homotopy inverse and its 

right adjoint induce an adjoint equivalence between the homotopic categories of 

K and Cat. 
Particularly, the adjoint pair c-Sd2: K —* Cat and Ex2-JV: Cat —> K 

where Sd2 : K —> K is the second barycentric subdivision [5], gives such an ad­
joint equivalence. Thomason [18] used this adjunction to give a closed model 
structure (in the sense of Quillen [15]) for Cat. Furthermore, using special prop­
erties of cSd2: K —> Cat, it follows that the geometric realization of any simpli-
cial set is homeomorphic to the classifying space of a small category. 

1. Preliminaries. The fundamental notions of homotopy theory in Cat and 

K9 respectively, are discussed in [10, III]. 

By A we denote the category of finite ordinals. According to [5] any pair 

of adjoint functors 

Te-\Sd: C - * K = [ A o p , Ens] 

is induced by 0 = Fd -A: A —> C, where C is a cocomplete category and A 

A —> K is the Yoneda embedding. In particular, c —I N: Cat —* K is induced 

by the canonical embedding t: A —> Cat. Furthermore, any natural transforma­

tion 

(1.1) t j r f l - ^ i: A—•Cat, 

using adjoint functor theory [9, IV], induces natural transformations r?2: Td —> 

*h: r* - 4 c: K - * Cat, J: rNe -^ IdK : K - * K. 
Moreover, the theory of coends [13, IX.6] guarantees that there exists a natural 

transformation 

making the following diagram commute 

(1.2) p • • unit 

We introduce technical notions; these are necessary because N, as a right 
adjoint, does not generally preserve pushouts even up to homotopy. For the 
sake of brevity we restrict to one case and suppress the dual formulations. 

1.3. An inclusion i: A ^ B in Cat is coadmissible, if b G A whenever b 

is a morphism in B with codomain in A. If R is a set of objects in the category 
B, the admissible hull of R in B is the full subcategory Z(R) of B generated by 
the morphisms in B with domain in R. 

1.4. Let ƒ be a partial functor from B to C, i.e. a functor in Cat defined 
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as a subcategory dom ƒ = A of B with cod ƒ = C. An object p € B is a ramifi­
cation object (with respect to f) if p is the codomain of at least two different 
morphisms in A which are identified by f We denote by Rf the set of ramifica­
tion objects in B and by W^ the full subcategory of B generated by A U Z(Rf). 

L5. Let 0: A —* Cat be a functor. For any n > 0 we denote by Ô [n] the 
boundary of 6[n] ;i.e,, the image of TQjn: YeA[ri\ —•• YQA[n] s d[n] where 
A[n] is the "simplicial" boundary of A[n] and ƒ„: à[n] ^ A[n] denotes the 
inclusion. An object or morphism in 0 [n] is interior if it does not belong to 
é[n], 

L6. A functor 0: A —• Cat is divided, if 
(i) for each face operator §': [n - 1] ^ [n], 0 < / < n, 0 < n, the inclu­

sion do*: 6[n - 1] °* 0[ra] is coadmissible; 
(ii) for each degeneracy operator é\ [« + 1] -—»-> [«] 9 0 < I < n, the epi-

functor Oct: 6[n -f 1] —>•* 0[w] has lifting with respect to codomain; i.e., given 
a morphism c E0[n] and an object p E0[n -¥ l] with cod c = (0(/)p, there 
exists a (not necessarily unique) morphism a E0[n -¥ 1] such that c = (0cf)a 
and p = cod a; 

(iii) every morphism ft E 0[H] has a unique decomposition of the form b = 
(0jS)a with ju face operator and a interior, 

1,7. REMARK. If 0: A —* Cat is a divided functor, then F0 : K —• Cat 
preserves inclusions. Hence we can identify 0[n] and reA[n]. In this situation, 
the functor T0J applied to the terminal map A[n] —> A[0], yields a functor co: 
0 [n] —• 0 [0] which we shall consider as a partial functor from 0 [n] to 0 [0]. 

2. Statement of general results. 

2.1. THEOREM, Let 0 : A —» Cat be a divided functor. If for all n>09 

0[n]is a coreflective subcategory of Ww (coreflective in the sense of [13, IV.3]), 
then 

p(X):rNd(X)-»NTd(X) 

is a weak homotopy equivalence (WHE) for all simplicial sets X. 

The main tool used to prove this theorem is the following compatibility of 
nerve and pushout. 

2.2. THEOREM. Suppose f is a partial functor from B to C such that 
(i) A = dom ƒ is a coadmissible subcategory of B; 
(ii) ƒ has lifting with respect to codomain; 
(iii) A is a coreflective subcategory ofVi^ 
Then the universal map NB UNA NC —• N(B UAQisa WHE in K; te. 

nerve preserves pushouts of this form up to homotopy. 

We assume that the conditions of 2.1 hold for the following corollaries. 
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23 . COROLLARY. Suppose that 6: A —• Cat is as in (2.1) and that there 
exists a natural transformation (1.1) such that 7}[k] : 0 [k] —• i[k] is a WHE for 
every k>0. Then Fd: K-* Cat is a weak homotopy inverse for N; Cat —* /(. 

Namely NTe and Id„ are connected by 

(2.4) NTe «j rNe f Id, 

where pX is a WHE by 2.1, and from the subdivision theorem [8, Theorem 1], 
i/JTisaWHE. 

That the natural transformation 

yields WHE for every small category, follows from diagram (1.2), and (2.4). 

2.5. COROLLARY. Suppose that 6: A —* Cat as in (2.1) and that there 
exists a natural transformation (1.1) such that r\[k] : 6 [k] —• i[k] is a strong 
homotopy equivalence (SH£) for every k>0. Then the adjunctions 

UK -A s$r0 and TQSQ - ^ IdCat 

induce WHE's 
X --* Ser0Xand TeSdC —• C 

for all simplicial sets X and all small categories C. 

To see this one proves first using (1.2) and (2.1) that a map ƒ is a WHE in 
K iff Tef is a WHE in Cat. The rest of the proof is precisely the same as the 
proof of Corollary 4.7 in [10], 

3. The special case 0 = cA'. The functor A': A —• K is defined in [59 

L2]. Then 6 = cA1; A —* Cat is divided, but does not satisfy the extra hypoth­
esis of 2.1. However, a weaker condition holds which yields the following 
theorem. 

3.L THEOREM: If X is a regulated simplicial set [12, III.8], then p(X); 
rm(X) = Sd(JO - » Mn0(JO is a WHE. 

We indicate another proof which gives a clearer interpretation of this result. 
It is based on: 

3.2. LEMMA. Let X be a regulated simplicial set. Then YeX = cSd X is 
a partially ordered set 

This may be shown by means of a straightforward computation and yields: 

3.3. COROLLARY : If X is a regulated simplicial set, then 

NTe(X)^*X 

where * denotes the "star" functor in [12, ÏIL9]. 
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Finally combining results of Barratt (see [3] and [12] ) and using a natural 
equivalence between Sd2 and Sd • Sdop, we find: 

3.4. THEOREM. NcSd2X is the simpUcial set of an ordered simpUcial com­
plex, for any simpUcial set X. Moreover there is a homeomorphism INcSd2X\ —* 
1X1. (Warning: This homeomorphism does not depend naturally on X.) 
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