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0. Introduction. This paper will survey recent progress in understanding the 
propagation of singularities of solutions to linear partial differential equations 
Pu — f> particularly hyperbolic equations, such as the wave equation (32/3f2 

- A)w = ƒ. Theorems describing this behavior, for general initial data, 
probably began with Lax [21] and Courant and Lax [6], although work on the 
problem dates back further. The method of analysis, known as geometrical 
optics, was used by Sommerfeld and Runge [44] and Birkhoff [2] in an effort 
to construct approximate solutions to the wave equation. This method was 
forged into a powerful tool, the theory of Fourier integral operators, by 
Hörmander [15], [16] and applied to get very general global results on 
propagation of singularities in [16] and [8]. 

In order to give a precise statement of Hörmander's theorem on 
propagation of singularities, we need to define the wave front set of a 
distribution, denoted WF(w), where u e fy'(ti) is a distribution on some 
domain Q c R". WF(w) was introduced by Hörmander [15], based on Sato's 
notion of S. S. u [42]. WF(w) will be a subset of r*(Q) «ÖXR". One way to 
give the definition is to say (JCO, £0) & WF(u) provided there is a <p e C0°°(Q), 
<p = 1 near JCQ, such that (<p«HÖ is rapidly decreasing as |£| -» oo for £ in 
some open cone T containing £>• An equivalent definition, using pseudo 
differential operators, will be given in §1. It turns out that the projection 
r*(Q)-»Q maps WF(w) onto the singular support of u (sing supp w), so 
WF(M) provides finer information than sing supp u. 

Now suppose Pu = ƒ in Q. We suppose P is a differential operator, or more 
generally a pseudo differential operator of order m, whose principal symbol 
pm(x, I), homogeneous of degree m in £, is real valued. Let q(x> Ö * 
|£|x~mpm(xi D, and consider the Hamiltonian vector field on T*(Q): 
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THEOREM (HÖRMANDER). WF(M) \ WF(/) is contained in chaxpm = {(*, Ç): 
pm(x, (•) * 0} and is invariant under the Hamiltonian flow generated by Hq in 
r*(0)\WF(/). 

This result says nothing about the reflection of singularities of u at the 
boundary 30, which we now suppose to be smooth. If P is a scalar 
differential operator of order m, and (y^ f0) G r*(30), there will be k points 
(y0, ij) G T*(Q) lying over C * Q (0 < k < m) (i.e., (y* Q « K * ( ^ Jy) 
where K: 30 -» 0) which belong to char P, assuming 30 is noncharacteristic. 
If we denote by yy null bicharacteristic strips passing through (y^ §) (i.e., 
integral curves of Hq\ and if we divide this set of rays into two groups, say 
y , , . . . , yp and ty+„ . . . , yk, we will say these two groups of rays are related 
by reflection. If u, solving Pu * ƒ, satisfies certain boundary conditions, say 
Bu * g on 30, one wants to know when smoothness of u along y , , . . . , ^ 
implies smoothness along the reflected rays y 7 + 1 , . . . , yk. The simplest case to 
treat is when all the rays yl9..., yk are transversal to 30. In such a case 
approximate solutions to Pu = ƒ, Bu ^ g can be computed using Fourier 
integral operators. Lax and Nirenberg [36] and also Chazarain [5] treated the 
Dirichlet problem, and general boundary value problems were treated by 
Majda and Osher [26] for scalar equations and by Taylor [48] for systems. It 
turns out that a Lopatinsky condition, reminiscent of the condition for 
regularity of an elliptic boundary value problem, leads to such reflection of 
singularities phenomena. This result is described in §2. We should mention 
that certain boundary value problems that occur naturally, for example in 
linear elasticity, do not satisfy this Lopatinsky condition, and more com­
plicated phenomena, such as Rayleigh waves, occur; this is also discussed 
in §2. 

The grazing ray problem, solved by Taylor [49] and Melrose [30], deals with 
the propagation of singularities along rays which hit 30 tangentially, locally 
staying inside 0 near the point of contact, which is of precisely second order. 
This work leads, for example, to a complete analysis of the singularities of 
solutions to the wave equation (d2/dt2 — A)u * 0 on the exterior of a smooth 
convex obstacle K in R", with for example Dirichlet or Neumann conditions 
on dK. In the case of the Dirichlet problem, important progress had been 
made by Ludwig [24] and by Morawetz and Ludwig [35]. The construction of 
approximate solutions needed to treat the grazing ray problem involves a 
class of operators more complicated than Fourier integral operators and is 
described in §3. It was only with the solution of the grazing ray problem that 
tools became available to give rigorous mathematical treatments of a number 
of problems of classical scattering theory involving a convex obstacle, such as 
the analysis of the asymptotic behavior of the scattering matrix and the 
justification of a number of results that previously had been obtained using 
Kirchoff s approximation. We describe some of this work, due to Majda [25], 
and Majda and Taylor [28], in §4. 

Time has not permitted us to discuss the recent work of Melrose and 
Andersson [1], [33], on propagation of singularities near the boundary on the 
interior of a convex region (the gliding ray problem) or the propagation of 
singularities of solutions to equations with multiple characteristics, where the 
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theorem of Hörmander mentioned above gives an inadequate description, on 
which progress has been made by Sjöstrand [43], Chazarain [4], Melrose [32], 
and others. Nor do we discuss the propagation of analytic singularities, for 
which we refer the reader to [42], [3], and [18]. 

We will use the following notation for pseudo differential operators and 
symbol classes. S£s is the symbol class used by Hörmander in [17]. We say 
p(x, 0 e S£ô provided 

iz>/z>^(^^)j < C7 (̂i -h^ir-^^^^. 
We say p(x, £) G Sm if p(x9 £) is asymptotic to a sum of symbols homo­
geneous of degree m9 m - 1, m - 2, etc.; Sm c S™0. If 2 is some symbol 
class and/>(JC, Q e 2, we say the operatorp(x9 D) belongs to OP 2. Thus we 
use the operator classes OP S^p OP Sm

9 etc. 

1, Fourier integral operators and propagation of singularities. The basic 
phenomenon öf propagation of singularities can be obtained by analyzing the 
first order hyperbolic pseudo differential equation 

•Jj w - i\(t9x9 Dx)u + g, (1.1) 

*(())«ƒ (1.2) 

where we suppose \{t9 JC, Dx) is a smooth family of first order classical pseudo 
differential operators, 

\(t, x, Dx)w =f\(t, x, Ç)eix*w(Ç) di 

with \(t9 x, £) ~X,(f, JC, £) + Xo(f, JC, £) + • • • , Xj being homogeneous of 
degree y in £. We assume \x(t, JC, Q is real valued. Existence and uniqueness 
of solutions to (1.1), given g G Hs and «(0) » ƒ E Hs, follows from simple 
energy estimates; see for example [46, Chapter IV]. We can construct an 
approximate solution to (1.1), (1.2) (in case g * 0) as a Fourier integral 
operator, of the form 

v(t9 x) « ƒ a(t9 x, &«'-**/ (0 di (1.3) 

Here a(t9 JC, £) is a classical symbol, a(t9 x9 £) — 2 j i 0
 aj(t> x> 0 ^ t h af 

homogeneous in £ of degree —y\ The "phase function" <p is real valued and 
homogeneous of degree 1 in & and |Vx<p| ¥" 0. The amplitude a and phase 
function <p are obtained as follows. Applying 3/3/ — i\ to (1.3) yields 

( f - iXY ' S^'a+a'~ ib)e'v(l) di (1,4) 

where b(t9 JC, £) is defined by 

*(i9x,Dx)(ae*) = be*. 

The fundamental asymptotic expansion lemma for pseudo differential opera­
tors implies that b is a symbol of classical type, and we have 

b(t, x, £) ~ 2 4 - \w(t, x, V<P)D; (a(t,y, g***"*0)! 
a>0 "• y 
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where p(x9 y9 0 = <p(t9y9 £) - <p(/, x9 Q - (y - x) • Vx(p(t9 x, £). In particu­
lar, the principal symbol of b is a^x(t9 JC, Vx<p). In order that the right hand 
side of (1.4) be smooth, we require that the full asymptotic expansion of 
i(pta + at — ib vanish. Setting the principal part equal to zero we get the 
eikonal equation 

<pt = \x{t9x9Vx<p). (1.5) 

This is a first order nonlinear equation, which has a solution for small |/| if 
<p(0, JC, I) is specified. We set <p(0, JC, £) = x • £. Setting further terms equal to 
zero, we get linear differential equations for the aj(t, x9 £), called the transport 
equations. For example, 

( i - 1 , ^ i)"°-(*•+£***•>)*-°- <i6> 
We specify as initial condition that a^O, JC, 0 = 1; for y > 1 we set a,(0, x, D 
« 0. Thus (1.3) leads to t>(0, x) = ƒ(*), by the Fourier inversion formula, 
while (1.4) implies that (3/3/ — i\)v is smooth. Energy estimates imply that v 
differs from the exact solution u to (3 /3 / - i\)u = 0, u(0) = ƒ, by a smooth 
error. 

In order to make sure (1.3) is well defined for distributions ƒ G S f(Q)9 and 
to justify (1.4), we use an integration by parts procedure similar to the method 
of defining the Fourier transform of a tempered distribution. Note that 
Le"p = fa* if L = | VJC<p|~2VJC<p • Vx, which is a vector field whose coefficients 
are homogeneous in £ of degree — 1. If M = V is the formal adjoint of L, 
and if Ü e C0°°, we have, formally 

(t>, ƒ « < ƒ (I) d£j = ffv(x)a(t9 JC, $)*«•ƒ (I) rf{ <fc 

- ƒ ƒ M* (t?a)^/ (|) </£ dx (1.7) 

(one need only worry about the integral over |£| > 1). If a E 5° as above, we 
see that Mk(va) has order — k in £. Since for any ƒ e S ' , ƒ(£) has at most 
polynomial growth, we see that, for k large enough, the last integral in (1.7) 
will be absolutely convergent. We can take this formula to define (1.3). 

For any fixed /, the wave front set of v(t9 x) = A(t)ƒ can be analyzed as 
follows. To say (JCO, ^ ) g WF(^4(/)/) is equivalent to saying that for some 
X E C0°°, x(x) ™ 1 near JCO, <x(Jc)e~**"*,^(0/> is rapidly decreasing as 0 -» oo 
on some conic neighborhood T of ^ Thus we consider 

(x(x)e-ixU(t)f) 

- ffff(y)x(x)a(t9 x9 Q* * < * © - « - * * 4 & rf£ (1.8) 

the integral with respect to >> being taken in the distribution sense, and the £ 
integral being regarded as an oscillatory integral, like (1.3). 

Before we proceed with the analysis of (1.8), let us make some preliminary 
observations that will simplify the analysis. Suppose WF(f) is contained in a 
small conic neighborhood of (yQ, TJ0). We may as well suppose that ƒ (y) is 
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supported near j>0. Also, since A (t) ƒ defined by (1.3) would only be altered by 
a smooth function, we may as well suppose that a(t9 x9 £) is supported for £ in 
a small conic neighborhood of TJ0, and that a(t9 x9 £) = 0 for |£| < 1. 

With these hypotheses, we can show that (1.8) is rapidly decreasing as 
9 -» oo in a cone T with the property that, for 9 G T, the function $ = 
<p('> *> £) ~~ y ' I "~ x • 0 has no critical point as a function of x and £, i.e., 
assuming that, for 9 G T, IV̂ cp - 0| + ||| |V̂ <p - .y| is bounded away from 0 
(on|£|, |0| > 1). Indeed, let 

^ - [ i V ^ - ^ + flÉI + I^IV^-jrl2]"1 

•[(V,<P~0)-Vx + (||| + |ö|)2(V,<p-^).V,], 

which yields Le'* = fe*. By hypothesis, the coefficients of L are smooth for 
9 E T, (f, x, |) G supp a. It follows that 

(xüx)e-»9A(t)f) =jfff(y)(L')k(x(x)a(t, x9 £)><* ̂  dx d£. 

Taking k large, one can show without difficulty that this is rapidly decreasing 
as 9 -» oo in T. Since any ƒ G & ' may be decomposed into a finite sum of 
fjle S ' with small wave front sets, this argument establishes the following. 

PROPOSITION 1.1. IfA(t)fis given by (1.3), then 

WF(A{t)f) c {(*, 0): (V (̂p, 0 G WF{f) for some 

(x9 | ) G come supp a and VJC<p(/, x, £) = 9 }. 

7%ws WF(ƒ) a«rf WF(.4 (f)ƒ) are related by the canonical relation 

(V*<P, I) h> (x, Vxç>). 

Given the eikonal equation (1.5) for <p, one can show that this trans­
formation is precisely the flow generated by Hx. Rather than giving the 
details of this here, we will give a different argument relating WF(w(0) to 
WF(ƒ), based on Egorov's theorem. 

Egorov's theorem analyzes the operator A{t)PB{i)9 where A(t) is the 
solution operator to (d/dt)u = iXu defined above, and B(t) solves the back­
wards equation, i.e., if (d/dt)u = i\u and u(t) = ƒ, w(0) = B(t)f. P = 
p(x9 D) is a scalar pseudo differential operator with symbol p(x9 Q G S™09 

i.e., \D£Dgp(x9 Ö| < c(l + |||)m" ,a |. In that case, we have 

EGOROV'S THEOREM. Q(t) = A(t)PB(t) is a pseudo differential operator, on 
a compact manifold Q, whose principal symbol (mod SJJf*) ö e#wa/ to 

q{t,x9Q-p(C(t)(x9Q) (1.9) 

w/iere C(0 & the flow generated by the Hamiltonian vector field Hx . 

PROOF. We briefly sketch a proof. We construct an approximate solution Q 
to the equation Q\i) = d/dt(A(t)PB(t))9 i.e. 

Q'(t) = /Ag (0 - iQ (t)\ mod OP S '°° (1.10) 
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with 0(0) = P9 such that Q(t) is a pseudo differential operator satisfying 
(1.9), and then we show that Q(t) differs from Q(t) by a smoothing operator. 

We specify the symbol q(t9 x9 £) of (?(/) so that (3/3/)# - i°[\,Q] is of 
order — oo, where 

O[KQ] - 2 ? W ) ( D f l ) - (^q)(D^X)}. 

We arrange this by setting q ~ 2„ > 0 ?„(', *, £) with £, E SJJfr. %{U x9 £) 
satisfies the transport equation (3/9/ — HXi)q0 * 0, with initial condition 
ô(0> ̂ ö * P(x> O- The qv f or p > 1 satisfy other transport equations, and 

q„(09 x, Q * 0. Then (1.9) is satisfied for q. 
Showing that Q(t) — Q(t) is smoothing is equivalent to showing A(t)P — 

Q(t)A(t) is smoothing. But if u(t) ~ A(t)Pf and v(t) * Q(t)A(J)f9 then 
w(0) - v(0) = 0 while (3/3/ — i\)(u - t>) is smooth. Energy estimates for the 
hyperbolic operator 3/3/ — iX imply that u — t? is smooth, given any distri­
bution/. Thus (?(/) — (?(/) is smoothing. 

For further details of this proof, see Chapter I of [47]. 
Given Egorov's theorem, we will establish the following result on propa­

gation of singularities. 

THEOREM 1.2. If the solution u to (3 /3/ - iX)u = 0, u(0)=f is u(i) = 
A(t)f9 then 

WF(w(/)) = C(/)WF(w(0)) 

where C(t) is the one parameter flow generated by HXi. 

In order to prove this result, we use a different characterization of WF(ƒ), 
also due to Hörmander, which uses pseudo differential operators. If p(x9 £) ~ 
2jLoPj(x, £) with pj(x9 0 homogeneous of degree —/ in £, we say p E S°9 

and/>(;c, D) E OP 5°. Char/? * {(*, Ç):p0(x9 Q * 0}. Then 

W F ( / ) « n{chMP:p(x9D)f EC™9p E 5 ° } . 

For the equivalence of these two definitions of WF(ƒ), see [7] or [15]. 
PROOF OF THEOREM 1.2. Let pj(x9 D) be a family of operators in OP 5°, 

each of whose symbols vanishes in a neighborhood of WF(/), but such that 
WF(/) - Dj char/?,-. Clearly pj(x9 D)f E C00 for eachy. If g - A(t)f9 this 
implies that A(t)pj(x9 D)B(t)g EC00. But by Egorov's theorem this is a 
pseudo differential operator, say ^( / , x9 D)9 and char ^( / , x, D) * C(/) 
char/?y. It follows that 

WF(^(/) / ) c H C(t)chzrPj = C(/)WF(/). 
J 

Reversibility of the hyperbolic equation (3/3/ — i\)u =•= 0 yields to reverse 
inclusion, so WF(A(t)f) * C(/)WF(/), as asserted. 

Note that the computation of u{t) via the geometrical optics construction 
(1.3) yields Theorem 1.2 for small /. Similarly, it yields WF(w(/)) * 
C(/, s)WF(u(s))9 where C(/, s) is the flow generated by the time dependent 
vector field HX9 from time s to time /, provided s and / are sufficiently close. 
A connectedness and compactness argument then yields Theorem 1.2. In 
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order to prove Theorem 1.2 in a fell swoop this way one would need a global 
construction of a parametrix, such as given in [8]. One way to obtain a global 
parametrix is as a product of solution operators with short time steps. The 
analysis of products of Fourier integral operators and the global construction 
of parametrices form some of the deepest parts of the theory of Fourier 
integral operators, and we refer the reader to Hörmander [15], Duistermaat 
and Hörmander [8], and Duistermaat [7] for discussion of these topics. 

Theorem 1.2 is not really equivalent to Hörmander's theorem, but we can 
obtain that result by a simple trick. Thus if Pu = ƒ, P has order m9 with real 
principal part, choose an elliptic operator E of order 1 - m and let X = EP, 
so you get \u = Ef = g. Now introduce an extra variable, t9 and let v(t9 x) = 
u(x). Then (d/dt)v = 0, so you have 

t;(0) = u. 

From this it is not hard to deduce, via Theorem 1.2, that WF(w) \ WF(/) is 
invariant under the Hamiltonian flow generated by HXi on J*(Q) \ WF(/). 

If P is not a scalar but a k X k matrix of operators, one can analyze the 
singularities of solutions to Pu * ƒ by multiplying by a convenient operator 
E9 of order 1 — m9 so that the principal symbol qx of EP is scalar. For 
example, one could take the principal symbol of £ to be |£|1~*m times the 
cofactor matrix of Pm9 so qx = ^ " ^ d e t Pm. However, for many systems one 
encounters in practice, it is best not to take the determinant of the principal 
symbol. To take a trivial example, suppose P is a 2 X 2 system whose 
principal symbol Pm(x9 Q = pm(x9 QI9 wherepm(x9 Q is scalar, real valued. If 
Pu e C00, WF(M) C {(*, £): pm(x9 Ç) = 0}. The above method implies that 
WF(«) is invariant under the flow on T*(Û) generated by Hq9 with qx(x9 Q * 
|£|1_ jPm(*> £)2. But clearly all characteristics of qx are double, so Hq » 0 on 
char/*, and hence the flow C(t) is the identity on charP, os we get no 
information about propagation of singularities by taking the determinant. 
However, the obvious result of interest is that WF(w) is invariant under the 
flow generated by H^ with qx = lÉp'TPm-

A more important example of this phenomenon is given by the equations of 
linear elasticity for an isotropic medium: 

32 

Lu = —j u - (À + /i) grad div u - /iA« * 0 0-11) 

where u * u(t9 x) is a 3-vector field on R X R3. The quantities \ and /A, called 
the Lamé constants, are assumed positive. The principal symbol of L is 
L2(t9 x9 T, Q - - T2/ + (X + /A)|I|2^ + M|I|2 where P^ is the orthogonal 
projection of R3 onto the space spanned by £ For each (T, £) ^ 0, this is a 
symmetric matrix, with a simple eigenvalue (X + 2/x)|£|2 — T2 and a double 
eigenvalue JH|£|2 — T2. The analysis of propagation of singularities of solutions 
to these equations of linear elasticity is a special case of the following result, 
which can be proved in the manner indicated above. 

COROLLARY 1.3. Let Pm(x9£) be a k X k self adjoint matrix, and suppose 0 is 
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an eigenvalue of multiplicity exactly m, on each connected component Tj of 
char P = {(*, £): det Pm(x, |) = 0}. Furthermore, suppose that there is an 
eigenvalue iy(x9 |)> of multiplicity exactly ny on some conic neighborhood ofTJ9 
with iij{x, 0 = 0 on Tj9 % smooth. If Pu = ƒ, then WF(w) C UjTj U WF(/), 
and (WF(H) n Tj) \ WF(/) is invariant under the flow (on Tj \ WF(/)) genera-
tedby H^i-n^. 

For further details on propagation of singularities from the point of view 
espoused in this section, we refer the reader to Chapter I of [47]. 

2. Reflection of singularities. In this section we shall examine reflection of 
singularities of solutions of first order equations of the form 

£ « - < * (21) 
in a region Q with boundary 3Q given by y = 0; say Q = R+ X 3Q. Here 
G = G (y) = G (y, x, Dx) is a smooth one parameter family of pseudo 
differential operators of order one on 30, G(y) E OP S1; u takes values in a 
vector space, Ck

9 and Gis&k X k matrix of operators, with principal symbol 
Gi(y, x9 Ö, homogeneous of degree one in {. We suppose the characteristics 
of 3/3/ - G are simple. On the boundary y = 0, a boundary condition is 
prescribed: 

Bu(0)=f (2.2) 

where B G OP 5° is a pseudo differential operator of order zero. 
There is no loss of generality in dealing with first order systems, since 

higher order equations can be reduced to first order systems by a standard 
argument (see, for example, Chapters IV and V of [46]). 

We suppose that ƒ has wave front set in a small conic neighborhood of 
(x0, £0) E r*(3Ö), which is no real restriction. Suppose that j null 
bicharacteristic strips yl9..., jj pass over (XQ, |0) E T*(dQ). We are treating 
the nongrazing case in this section, so we suppose the yy all intersect 30 
transversally. It's not too hard to see that this hypothesis implies that the 
principal symbol of G (y) is similar to a matrix of the form 

A, 

[ A + 
near (x0, £>)> where \(y, x, Q are real valued (scalar), the spectrum of 
A„(y, x, Q has negative real part, and the spectrum of A+(y9 x, £) has 
positive real part. This similarity can be effected, near (JCO, £0), by an invert-
ible matrix function U(y9 x9 Q; Gx « UGXU~X near (x& £0). 

If i//(*> Ö is ^ z^o order symbol supported in a small conic neighborhood 
U0 of (XQ, |0) and equal to 1 on a smaller conic neighborhood, let v « 
U(y, x9 D)\f/(x9 D)u. Then v solves the system 

- G, (2.3) 
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j - v = Gv + F (2.4) 

with boundary condition 

UBU-lv(0)=f. (2.5) 

Here G = UGU~l + UyU~l G OP Sl has principal symbol Gx(y9 JC, £). F = 
UW, G]u and ƒ = C/[5, i//]w(0) + £# plus smooth functions. With (2.4) we 
have decoupled the equation (2.1), at least in the principal part. There is 
coupling in the zero order terms. It is convenient to completely decouple (2.4), 
modulo a smoothing operator. We briefly describe how this can be accom­
plished. 

We consider a slightly more general problem. Let v solve the system 

±v-(F
 E)» + A» (2.6) 

where G = (F
E) has symbol homogeneous of order 1 and A has order zero. 

The assumption we shall make on the symbols F(y9 JC, Ç) and E(y9 JC, Ç) is 
that these two matrices have disjoint sets of eigenvalues, for each (y9 JC, £). 
First we decouple terms of order zero by a substitution w(1) = (1 + Kx)v9 

with Kx E OP S ~l chosen appropriately. This yields 

GH>(1) + (KXG - GKX + A)wil) + • • • . 

making the of f-diagonal term of KXG — GKX + A vanish 

\ \ ^ 2 1 ^ 2 2 / / 

is equivalent to having, on the symbol level 

KX2F - EKX2 = -AX2, 

K2XE-FK2X=-A2X. (2.7) 

Since the spectra of E and F are assumed disjoint, it is a simple linear algebra 
exercise to obtain unique solutions Kx2 and K2X for (2.7). This decouples the 
zero order part of (2.6). One can continue in this fashion, setting M>(2) = (1 + 
K£wil\ with K2 E OP S "2, etc. Finally, let w = (1 + K)v with 

1 + K (1 + K2)(l + Kx) 

to obtain an equation for w which is completely decoupled, modulo a 
smoothing operator. 

Applying this decoupling procedure inductively, we can write w « ( l + 
K)v with K E OP S~l such that 

dy W (1) Œ 

If we specify 
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\Wl 1 

I W _ J 

where, modulo unimportant inhomogeneous terms, wv solve the equations 

-fy w, = fo(y> *> Dx)w, (2.8) 

and w+ and M>_ solve, respectively 

A w+-a„(y,x9Dyw+9 (2.9) 

A H^=a+0>,x,Z>)w_ (2.10) 

and furthermore the principal symbol of ju> is A„, the principal symbol of 
tf-(>% x9 Dx) is .4_, and the principal symbol of a+(y9 x9 D) is A+. The 
boundary condition (2.2) becomes essentially 

BU~l(l + Kylw(0) = f. (2.11) 

The reflection of singularities phenomenon we consider is described simply 
as follows. Suppose we know that u is smooth in a conic neighborhood of the 
rays y„ . . . , y, (0 < / < j) passing over (x^ £0) E r*(3îî), where y, is a null 
bicharacteristic strip associated to d/dy — / \ . Note that this is equivalent to 
the smoothness (up to the boundary y =•= 0) of wl9..., wt. More generally, 
suppose we know the nature of the singularities of u near yl9..., y;, i.e., 
suppose we know w„ . . . , wh mod C00. We want to construct a parametrix 
for u(y)9 which in particular will tell us the nature of the singularities of 
H>/+I, . . . , Wj, and also the boundary regularity of w+, hence the complete 
nature of the singularities of u. (Note that since w+ and w_ solve elliptic 
evolutions, forward and backward, respectively, they are automatically C°° 
inside (0, Y) x9fl and w_ is smooth up to the boundary y * 0.) The 
following result is a consequence of the conversion of (2.1), (2.2) into 
(2.8M2.11). 

THEOREM 2.1. Suppose that, given the values of Wj(0),..., w7(0) and of 
w_(0), the system (2.11) is an elliptic system for w /4>1(0),..., > (̂0), w+(0). 
Then smoothness of u along yl9..., yt implies smoothness of u along 
Y/+i> • • • 91'p provided (x^ |0) £ WF(/). Furthermore the parametrix for u can 
be constructed by solving (2.11) for w/+ ̂ 0 ) , . . . , Wj(0)9 w+(0), then solving (2.8) 
for w^x(y)9..., Wj(y) and (2.9) for w+(y)9 and then writing u = U~~\\ + 
A : ) - 1 * . 

Examples where this theorem works include the Dirichlet and Neumann 
problems for the wave equation (32 /9/2 - A)u - 0, reduced to a first order 
system, assuming that tangential bicharacteristics don't pass over (XQ, £>). In 
this case, over each (XQ, Q E r*(3Q) passes either two rays, which are 
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related by angle of incidence equals angle of reflection, or one ray (grazing), 
or no rays. The transmission problem is also included in Theorem 2.1. If S is 
a surface in R3, dividing R3 into two regions, Q1 and Q2>

wc suppose 

(3 2 /3 / 2 - C^)u = 0 in R X Q„ 

(32/3f2 - CiA)v = 0 in R X S22 

with u\s * v\s and Vu\s =Vv\s. Suppose Cx ^ C2 on K. In this case, over 
each point in T*(R X S) \ 0 pass either 4 rays (the "hyperbolic" region), 3 
rays (1 grazing), 2 rays (the "mixed" region), 1 ray (grazing), or 0 rays (the 
"elliptic" region). All nongrazing cases are treated by Theorem 2.1. The 
directions over which 1 grazing ray and 2 nongrazing rays pass represent the 
critical directions bordering total internal reflection of rays hitting S from the 
slow sound speed region. In [48] a construction is given showing how a laser 
beam aimed at S and hitting it at such a critical angle can shoot off a 
two-dimensional sheet of singularities. 

The Dirichlet problem is an example of a well posed boundary value 
problem in the sense of Kreiss [20] and Sakamoto [41]. As shown in [48], for 
all such boundary value problems, analysis of reflection of singularities in the 
nongrazing case follows from Theorem 2.1. The Neumann boundary value 
problem, and also the boundary value problems for electromagnetic waves on 
the exterior of a perfectly conducting obstacle, do not satisfy the Kreiss-
Sakamoto condition, but this condition fails only at the grazing directions. 
This makes the parametrix for the diffraction problem a little different from 
that for the Dirichlet problem, but doesn't affect the nongrazing analysis. 

One important problem for which the Kreiss-Sakamoto condition fails in 
nongrazing directions is the following problem from linear elasticity: 

Lu - -2-j u - (A + jut) grad div u - juAt/ * 0 (2.12) 

already discussed in §1 (see (1.11)) with the boundary condition 

2 / 1 ^ = 0 on 3̂ T (2.13) 

where Oy is the stress tensor: afJ =-= X(div w)Ŝ  + ^(dujdxj + dUj/dXf). Here nt 

represents the components of the unit normal to dK. As mentioned in §1, 
(2.12) has two sound speeds. Consequently, as for the transmission problem, 
r*(R X 3tf) is divided into 3 regions. It turns out that the Kreiss-Sakamoto 
condition fails on a conic hypersurf ace in the "elliptic" region of T*(R X dK) 
(over which no rays pass). Theorem 2.1 does not apply to this boundary value 
problem. Indeed, when (2.12) is converted to a first order system, the 
boundary pseudo differential operator one obtains to analyze (2.13) is not 
elliptic. It turns out that, upon multiplication by an elliptic scalar, the 
operator one gets has real determinant, with simple characteristics. 
Consequently a unique solution (mod C00) to the associated boundary 
condition can be found, and its singularities analyzed by Hörmander's 
theorem on propagation of singularities. Such singularities propagate at a 
speed a little less than the slower sound speed of (2.12). The associated 
solutions to (2.12) have singularities which run along the boundary at such a 
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speed. These are called Rayleigh waves, and were first studied for flat 
boundaries in [40]. For the details of the analysis in the presence of curved 
boundaries, see [52]. A generalization of the analysis leading to Theorem 2.1 
yields the following result, which contains the analysis of Rayleigh waves. 

THEOREM 2.2. One can construct a solution (mod C00) to (2.1), (2.2), given 
ƒ E S'(3Q), with the property that u is smooth along the rays yv . . . , y/5 

provided that, for specified wx(0)9..., M>,(0), W_(0) E C°°(3£2), we can solve 
the system 

BU(0y\\ + Kylw(0)=f (modC00) 

for H>/+1(0), . . . , Wj(0), w+(0). If we can deduce that WFH>„(0) C T„ WFW+(0) 

C T+, where Tp (v = / + 1 , . . . J) and T+ are closed conic subsets of r*(3Q) 
obtained from WF(/) by some process, it follows that WF(w) is smooth except 
along those rays passing over \JVTP. Furthermore, w+(y) is smooth up to the 
boundary y = 0 except at points x E 3 Q such that (x, Q E T+ for some £ 

We close by remarking that another approach to the analysis of reflection 
of singularities, given the results of Lax and Nirenberg [36] for the Dirichlet 
boundary condition, is to construct a pseudo differential operator Q on 30 
such that if Pu = 0, u\dÇl=f, then Bu\dÇl = Qf. Then the analysis of 
reflection of singularities is reduced to the analysis of Q. This approach is 
taken in Majda and Osher [26]. For further details on the approach discussed 
in this section, see [48]. 

3. Grazing rays and diffraction. In this section we treat the diffraction 
problem, the study of propagation of singularities along rays which hit 30 
tangentially. We assume that such rays remain inside Q, and have exactly 
second order contact with 3 £2. Such rays are called grazing rays. If Q = R X 
(Rrt \ K) where A' is a smooth strictly convex obstacle in R", then straight 
lines hitting 3Q tangentially, travelling at speed 1, give rise to grazing rays for 
the wave operator • = d2/dt2 - A. Since all the analytical difficulties occur 
in this case, we will restrict our attention to the wave equation 

(£-4-0 (3-D 
on the exterior of a smooth convex obstacle K c R". We will consider either 
Dirichlet boundary conditions 

«U=/ (3-2) 
or Neumann conditions 

9^ U\ZK= S (3.3) 

and make brief comments on more general boundary conditions. Here we 
assume/, g E ê'(R X 3#) = &'(32) and take the unique solution u to (3.1), 
(3.2) or (3.1), (3.3) which vanishes for t < 0. 

If WF(/) is disjoint from the set of directions in r*(3Q) over which grazing 
rays pass, the construction of §2 will work. Since we can write any ƒ as a finite 
sum of distributions with small wave front sets, we may suppose WF(/) is 
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contained in a small conic neighborhood of a point (XQ, f0) E 71*(3Q) over 
which a grazing ray passes. We want to construct a solution, mod C00, to 
(3.1), (3.2) (or (3.1), (3.3)), equal to 0 for t < 0, which is only singular in a 
small conic neighborhood of this ray. 

To motivate the ansatz we will use, let's consider why the usual geometrical 
optics ansatz, using operators of the form (1.3), which as we saw in §2 works 
for nongrazing reflection of singularities, fails in the grazing ray case. The 
reason is that the phase function, which would be real valued in the 
"hyperbolic" region but complex valued in the "elliptic" region, would fail to 
be smooth. This corresponds to the fact that the canonical flow of points in 
T*(d fl) along rays in T*(2) fails to be smooth at the grazing directions. What 
is needed is some smooth decomposition of the rays near grazing, and this is 
provided by a "caustic decomposition" of the rays having caustics on convex 
surfaces Sa tending toward S0 = 3Q. The grazing rays have as their caustic 
surface precisely 3 £2. The construction of solutions with a given convex 
caustic has been carried out by Ludwig [23] and such constructions involve 
the Airy function. See also Duistermaat [7]. 

Recall that the Airy function, defined by 

Ai(s) = - ƒ °° cos ( ~ t3 + st\ dt 

solves the Airy equation 

Ai"{s) - sM{s) = 0. 

The asymptotic behavior of Ai{s) is well known (see Erdélyi [10]). Ai(^) is 
equal to the sum of two oscillatory terms for s < 0 and exponentially 
decreasing for s > 0. Furthermore, we have the following asymptotic 
expansion, valid for — IT < arg z < m\ 

Ai(z) - $(z)e-(2^3)z3/2 (3.4) 

with 

* < z ) ~ 2 " / 4 ( ^ + " z " v 2 + - - - ) asz-»oo. 

We will construct an approximate solution to (3.1), (3.2) as a superposition 
of functions of the form (with f = (£, TJ)) 

[g(Ux,S)A(\ï\-l/*f>{t,xA)) 

+ih(t9 x, oiC1/3^'(!£f I/3P(', x, o)p ( ' '*'° 
where A (s) = Ai(- e(2/3)OTi), also a solution to Airy's equation. From (3.4) we 
see that A(s) for s-> +oo is purely oscillatory, while A(s) has exponential 
increase as s «-» — oo. In fact, we have 

A(s) = $(e-™/3s)e-<2/3>*3^ s > 0, 

A (s) = $( - e2^s)e2^-s)3/\ s<0. 

The function p will be positive outside the caustic and negative inside. 
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With these considerations in mind, we now write down the parametrix for 
solutions to (3.1), on R X (Rn \ K). 

«(*,*)-ƒƒ 4lC/3p) 
H-\t\-l/3v) 

+*l«l -1/3 A\rl/3f>) 
^H«r1/3i) 

e'F&rùdèdi, (3.5) 

where p = p(f, JC, £ TJ), and 0 = 0(t, x, £, TJ) will be our phase functions and 
g = g(/, x, £, TJ) and h = h(t, x, |, TJ) will be our amplitudes, p and 0 will be 
real valued and homogeneous of degree 1 in (£, TJ), and we will have 
g ~ 2 7 > o § ' * ~ 2y>0fy witl1 £/> fy homogeneous of degree -j in (£, TJ). The 
distribution F is an unknown, which will be determined by the boundary 
condition. 

To guarantee that the function u given by (3.5) solves the wave equation, 
up to a smooth error, we apply the wave operator to (3.4) and separate out 
terms of like order. We use the Airy equation for A(s) to express the 
integrand in terms of A(\e\~l/3p) and ^'(|£|~1/3P). We regard ^'(|H"1/3P) as 
having order } greater than A(\£\~l/3p)9 as suggested by differentiating (3.4). 
Setting the top order term equal to zero yields the eikonal equations for p and 
0: 

^ - l ^ + ^ W - l ^ l 2 ) - * (3.6) 

0tPt-Vx0.Vxp = O. (3.7) 
The function p vanishes on the caustic surface Sa9 a = l^l"1^ TJ). For TJ = 0, 
Sa = 90. As shown by Ludwig [24], one can prescribe 0 on Sa, as any solution 
of the associated surface eikonal equation, and then there is a unique solution 
to (3.6), (3.7), smooth up to Sa, but the solution only exists on the illuminated 
side of the caustic. Thus p and 0 are defined on R X (R" \ K) = Q, only for 
TJ < 0. However, as shown in [49], p and 0 may be continued smoothly to 
TJ < 0 in such a fashion that (3.6), (3.7) is satisfied to infinite order on 9 Q in 
this region, and this still implies that (3.5) yields a solution (mod C00) to the 
wave equation. Ludwig [24] also shows that we may choose the caustic 
surfaces in such a fashion that 

fl-'p = -jÉf'Tj + 0((|Tj|/|£|f) o n 9 Q (3-8) 
which is very convenient. An even stronger result follows from the work of 
Melrose [31], which we will discuss shortly. 

Setting further terms equal to zero yields the following transport equations 
for g and h; here V0 stands for V(/JC)0, and the inner product is with respect 
to the Lorentz metric, 

2V0.Vg + 2-|Vp-V/* + (D0)g 

+ | J ( D P ) A + j| |(Vp)2/i--Dir, (3.9) 
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2Vp • Vg + 2V0 - Vh + (pp)g + (nO)h = - D * (3.10) 

where the equations are satisfied in the formal sense that equality holds for all 
terms of like degree of homogeniety. As for (3.6), (3.7), exact solutions on Q 
exist for TJ < 0, which can be continued smoothly to TJ > 0, as solutions to 
infinite order at 3S2. Furthermore it can be arranged that 

* - ^(M/lfl)00) on9Q- (311) 
We now show how F can be determined so that the Dirichlet boundary 

condition (3.2) is satisfied. In fact, given (3.5), we have 

H dQ =ƒƒ 
~J(F) 

g+ u -1/3 ^ ( I C ' / 3 P ) 
BeKf>^FdZ<h\ 

(3.12) 

where 

H4ur-un for ri < 0; y = 0 for r» > 0, 

a smooth function (on 3Q) homogeneous of degree 1 in (£, TJ), and where 

* ( I C 1 / 3 P ) 
î? < 0 , 

1, T? > 0, 

so 5 E Ŝ o on 3Q. Since h vanishes to infinite order on TJ * 0, on 30, it 
follows that the amplitude in (3.12) belongs to S°0. One can arrange that 
g ^ 0 near i\ = 0, so / is an elliptic Fourier integral operator, of classical 
type. The canonical transformation associated with / maps the "characteristic 
variety," over which the grazing rays pass, to the variety r\ * 0, and is locally 
bijective. Consequently, by the calculus of Fourier integral operators devel­
oped in [15], we can solve the equation J(F) « ƒ, mod C00, for F, and then 
the function u given by (3.5) solves (3.1), (3.2), mod C00. 

The analysis of the singularities of w, given by (3.5), is an elaboration of the 
analysis given in §2. For the details see Melrose [30] or Taylor [49]. The result 
is that WF(n) is contained in the set of rays passing over WF(/), going into 
positive time. 

To solve the Neumann problem (3.1), (3.3), we again let u be given by (3.5) 
and compute 3w/<MaQ- We have 

3 
dp dQ 

•ff[M - evh + ihv}Ce^^\i\-^^(\^\)Fdichi 

+ If[i0'8 + 'tö* W + g,]Be«*+*Fdi(hi 
KtQF+ K2F (3.13) 
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where C G 5,% is defined by 

A\srl/3p) 

and g is a pseudo differential operator with symbol 

° e = l C , / 3 f (l*r , /3^)e5?Ao- (3-14) 
We see that Kx and K2 are Fourier integral operators, with amplitudes in ,S£0. 
Also, the convexity of dK implies that p„ ^ 0 at y\ = 0 on 3Î2, while 0, = 0. It 
follows that Ĥ  is elliptic. Also, 7, #„ and K2 are all associated with the same 
canonical transformation. It follows that, denoting by J~l a microlocal 
parametrix for ƒ, 

J-X{KXQ + K2) = AQ + B (3.15) 

where A G OP S^ is elliptic and B G OP S}fi has principal symbol vanishing 
at TJ = 0. 

If JV denotes the Neumann operator g = Nf, where g ^Bw/^Haa for u 
solving (3.1), (3.2), u = 0 for / < 0, we see from (3.13) and (3.15) that, near 
grazing directions, 

N = J(AQ + B)J-1 (3.16) 

This formula plays a crucial role in the application of the grazing ray analysis 
to problems in scattering theory, as we'll see in the next section, but now we 
use it to solve (3.1), (3.3), mod C00, thus obtaining the same information on 
propagation of singularities near grazing rays for Neumann boundary 
conditions as we obtained for Dirichlet boundary conditions. 

Note that g "~* G OP S}/^ since neither A(s) nor A\s) has any real zeros. 
Now writing AQ + B * (A + BQ~l)Q9 we see that the principal symbol of 
BQ ~x is of the form (with bQ G S^ 

tö1/3,i p (lC,/3^o(>> x, fe 10 - |€|2/3|€|-I/3i £ (|£r,/3^o('> x> fe i). 
This belongs to $1/3,0 and is small in a small conic neighborhood of TJ = 0. 
Consequently A + BQ~l e O P S , 1 ^ is elliptic, so (A + BQ~lyl E 
OP Si/3,0. Consequently we can write 

N-l = JQ-x(A+BQ-l)~lJ-\ 
Thus we can write down a solution to (3.1), (3.3) as merely the solution we've 
already constructed to (3.1), (3.2), setting ƒ » N~lg « JQ~l(A + 

A large variety of boundary conditions for hyperbolic equations is treatable 
by the method outlined above. In [50] the diffraction problem is treated for 
Maxwell's equations for electromagnetic waves on the exterior of a smooth, 
convex, perfectly conducting obstacle; this leads to a nonelliptic (but hypoel-
liptic) Fourier integral equation similar to (KXQ + K^F = g. Also the 
diffraction problem for a clear convex obstacle, of index of refraction 
different from 1, is treated; this leads to an elliptic Fourier integral equation, 
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but one more complicated than J F = ƒ, since the operator Q is also involved. 
Generalizing the Dirichlet and transmission problems, [50] also treats the 
diffraction problem for first order systems satisfying the Kreiss condition 
(micro-locally). There is an error at one point in this argument, which is 
corrected in [51]; in [51] there is also a treatment of the diffraction problem 
for a general class of systems for which one has a loss of 1/3 derivative when 
solving the appropriate hypoelliptic Fourier integral equation; this class is 
related to the class of Kreiss-well-posed problems as the Neumann boundary 
condition is related to the Dirichlet boundary condition. 

There is a slightly different approach to the diffraction problem, due to 
Melrose, which follows from the work [31] of Melrose on the equivalence of 
glancing hypersurfaces. We say two hypersurfaces of r*(fl), given by F = {ƒ 
= 0} and G = {g = 0} are glancing at z G F n G if df (z) and dg(z) are 
linearly independent, and letting {ƒ, g) = Hfg9 

{f,{f,g}}(z)*0 and {g,{g,f}}(z)*0. 

In [31] it is shown that any two pairs of glancing hypersurfaces, F, G and F', 
G' (glancing at z') are locally equivalent in the sense that there is a symplectic 
map taking z to z' and (locally) F to F', G to G'. If the hypersurfaces are 
conic and we assume that df(z), dg{z) and 2§dxj are linearly independent at 
z, with a similar assumption at z', then the symplectic map can be chosen to 
be homogeneous of degree 1. The solution to this problem answers affirma­
tively, in the C00 category, a conjecture of Sato (which has been shown to be 
false in the real analytic category). The solution to this equivalence problem 
allows one to reduce the study of the phase functions and amplitudes 
occurring in the parametrix to the construction made in the example studied 
by Friedlander [13]. The solution to this equivalence problem has also 
enabled Melrose [33] and Andersson and Melrose [1] to analyze propagation 
of singularities along the boundary on the interior of a convex region. 

Finally, we refer the reader to the papers of Eskin [11], [12], dealing with 
these propagation of singularities problems. 

4. Diffraction theory and scattering theory. A great deal of classical 
scattering theory is devoted to the study of the scattering amplitude associated 
with an obstacle K, which we now discuss. We will restrict our attention to 
Dirichlet boundary conditions, though modifications of these methods handle 
many other boundary conditions, such as the Neumann condition and the 
boundary value problem for electromagnetic waves on the exterior of a 
perfectly conducting obstacle; see [25], [27]. We assume the obstacle K is 
smooth and bounded and strictly convex, K c R3. Pick unit vectors 0, <o in 
R3, and let A e R. 

Let us(x, (o, X) be the unique solution to the exterior boundary value 
problem 

(A + A2K = 0, (4.1) 

U*UK= ~e (4.2) 
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satisfying the "radiation condition" at infinity. Such a solution has the 
asymptotic behavior us(r0) ~ (eiXr/r)b(9) + o(l/r), and the scattering 
amplitude as is defined by the formula 

0,(0, (o, A) = Urn re'iXrus(r0, co, X), (4.3) 

The solution us to (4.1), (4.2) can be represented by Green's formula: 

«,(*) -fJpV) Yv G^x -rt-j; G^x -*>) dsW 
where Gx(x) - eAW/|x|. Applying (4.3) yields 

a,{9, «, A) -J^e"«*[ i \ {v-e)u s (y , <c,X) + A „,(_„, tt>X)] *»O0. (4.4) 

A more convenient representation is obtained by taking the Fourier trans­
form with respect to A. We have 

W»,t)-faK(j;-(>"9)ji)*,Or,a,t+y'0)dS(y) (4.5) 

where us(y, <o, t) is characterized in the following fashion. It solves the 
boundary value problem 

(ji-A)4-0, (4.6, 

«. |»xM--«(<-.>"»)l»x»* <4-7) 

and is "outgoing," i.e. us = 0 for t < 0. We replace (4.5) by 

«J00 ƒ e-*(N-{v-0)^y(t+y-9-y*»)dS{j)di (4.8) 

where # is the Neumann operator discussed in the previous section; recall 
(3.16). 

Now these formulas are standard, but until the Neumann operator was 
analyzed it was not possible to use them to give a rigorous analysis of the 
scattering amplitude as as X-»oo. Calculations were made based on the 
Kirchoff approximation, which states that the normal derivative of us is given 
by 

-jp » -v u{ik)e-!Sxw on8tf+, 

- ^ « ^ • « ( i A ) * - * ™ o n e * - (4.9) 

where dK+ = {x E BUT: v • <o > 0} is the illuminated side of dK and 9JST~ * 
{x G SA': y • <o < 0} is the shadow side. This rule was motivated by the idea 
that the scattered field, for large X, is approximately given by the rules of 
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geometrical optics. With the solution to the grazing ray problem we can say 
that (4.9) is valid, to first order, as X -» oo, at least away from the grazing 
submanifold G(co) = {JC E dK: v • <o = 0}. There the formula (3.16) provides 
a more serious correction. Since G(co) is a small set, one might expect that 
integral formulas such as (4.8) will have the same asymptotic behavior, in the 
principal part, as the expression one would get by replacing N8 by its 
Kirchoff approximation. This is correct, though the proof is not always easy. 

Analyzing the asymptotic behavior of as(0, co, X) as À -> oo, for fixed 0, co, is 
equivalent to analyzing the singularities of âs(0, co, /). First we locate the 
singularities of 

as(0,u,t)=f G(y,u,t+y0)dS(y) 
JdK 

where G(y9 co, t) = (N-(p- 0)d/dt)S(y • co - /)• From (3.16) we see that N 
is pseudo-local, i.e. preserves wave front sets. Consequently WF(G) c 
WF(8); thus WF(G) is contained in the set of normals in R X dK to the 
hypersurface t = y • co. From general results on wave front sets (see [7] or 
[15]) it follows that âs(0, co, t) is only singular for those values t0 for which the 
hypersurface / * y • co intersects the hypersurface t * t0 + y • 0, nontrans-
versally. For 0 =* co this happens precisely at t0 » 0, where the two hyper-
surfaces coincide exactly; this "big" singularity in âs(0, 0, t) leads to the 
"diffraction peak" in the forward scattering amplitude as(0, 0, X). For each 
pair 0, co with 0 ¥* <o, there are precisely two such values of t, given by the min 
and max, respectively, of y • (0 — co), y ŒdK. At these two points, yx(0, <o) 
and j>2(0> w), the normals to dK are parallel (resp. antiparallel) to 0 — co. One 
can show that in fact there is no singularity at t « rnaXy^dxy • (0 — w). 

To analyze the singularity of âs(0> w, /) when 0 ¥* co, one need only work 
near y • yx(09 u>). By means of the method of stationary phase, (4.8) can be 
asymptotically evaluated. See [25] or [27]. One obtains, for the Dirichlet 
problem, 

a.(9, <o, X) - g C f o r ' / V * * - * * j / ^ j +0(X->) (4.10) 

where %(y\) is the curvature of dK at y{(0, co). This formula has several 
interesting implications. In particular, given a knowledge of the asymptotic 
behavior of \as(0, co, X)| for sufficiently many (0, co), one can determine the 
curvature of dK in every direction, and this uniquely determines K. Similar 
work done in [27] on clear convex obstacles enables one to determine not 
only the shape of an obstacle, but also its index of refraction, at the 
boundary, given the asymptotic behavior of the "filtered scattering ampli­
tude." 

The analysis of the forward scattering amplitude as(0, 0, X), carried out in 
[28], involves greater difficulties, since in this case the grazing submanifold 
G(co) makes a bigger contribution to the asymptotic behavior, and certain 
unpleasant features of AT have to be dealt with. The Kirchoff approximation 
suggests that 

as(0, 0, X) - 2 / x f »(JC) • 0 dS{x) = 2/X Area(S(3A:, 0)) (4.11) 
•'SAT "*" 
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where S (dK, 0) is the projection of dK onto the plane orthogonal to 0, the 
"shadow projection" of dK in the direction 0. In this case, one cannot obtain 
the asymptotic behavior by looking at (4.8) and applying the stationary phase 
method in a straightforward manner, due to the fact that symbols in Si/30 are 
involved in the formula (3.16) for the Neumann operator N. 

We analyze 

f°° f e-iXtN8(t+yO-yü))dS(y)dt = (e-iXt,J(AQ + B)J~l8) 

as follows. Write it as 

(J*(e~iX')9 (AQ + B)J~l8). (4.12) 

As is shown in [28], the canonical transformation associated with J ~l can be 
arranged to yield no caustics when applied to WF(S), and consequently, 
using the stationary phase method, one obtains an asymptotic progressing 
wave expansion 

J-l8~B08(j) + Bfitf) + • • • (4.13) 

with a certain phase function \p, and 5, G OP S ~J' classical pseudo 
differential operators. Also we get the asymptotic expansion 

J*(e~iX') ~ e'»* (a0 + a^" 1 + • • • ) . (4.14) 

Consequently, (4.12) becomes 

( a 0 e - ^ , ( ^ Ö - h 5 ) 5 0 8 ( ^ ) ) + . . - . 

In order to compare this with the integral we would get by replacing N8 by its 
Kirchoff approximation, we split AQ + B into two parts. Introduce the 
cut-offs <p,(£, rj) = <p(\(ft~*n) E Sa°0 and <p2(£, T?) = 1 — q>x(& TJ), with <p e 
C0°°(R), <p(s) = 1 for |^| < 1, choosing a such that \ < a < 1. Then write 
(4.12) as 

{J*{e~ixtl (AQ<p2(D) + B)J~l8) + {J\e'iXt),AQ^x{D)J-x8). (4.15) 

The first term can be asymptotically evaluated by the stationary phase 
method, since AQ<p2(D) + B G OP Ŝ o* a n d o n e ge*s agreement with the 
Kirchoff approximation. It remains only to estimate the error term 

(j^e-^lA&p^DXJ-iô)). (4.16) 

Now AQq>x(D) E OP Sifloa/2
9 so has order less than 1. Consequently one 

expects (4.16) to grow more slowly as A-»oo than the principal terms. 
However, it is still not possible to get a simple estimate of (4.16) by the 
stationary phase method, since the type (},0) is not amenable to such 
analysis. 

Fortunately, the special structure of the operator AQtp^D) leads to Lp 

estimates which yield an adequate estimate of (4.16). In fact, 

AQq>x(D): W'p -» ws~{l/2+a/2\ Kp<oo. (4.17) 

Since (4.13) implies that / " l8 e Wf+j, using (4.14) we easily obtain 
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\(j*(e-iXt\AQ<Px(D){J-x8))\ < c\l'2+a'2+B. (4.18) 

In [28], taking a = 3/5, and authors deduced that 

as(0, 0, X) = 2ÎÀ Area (S(dK9 0)) + 0(\4/5+e). (4.19) 

With very little extra work one can improve the error estimate to 0(A3/4+c), 
as indicated in [47, Chapter IV], With a bit more work one can improve the 
error estimate to 0(A1/3+e), and it seems that one can produce the sharp 
error estimate O (X1/3), though the details have not yet been worked out. 

(4.17) is a special case of the following result. Define the class of symbols 
9II™ by the condition p(x9 £) E 9HJ1 if and only if, for all multi-indices a, 

i*Dfr(x9 i) E Sfr 
We say p(x9 D) E OP 9IL .̂ Using the Marcinkiewicz multiplier theorem 
(Theorem 6', Chapter IV of Stein [45]), one can deduce that 

p(x,D)eO?mZ=>p(x9D): w;->W;-m, l<p<oo. 

It is not hard to show that AQy^D) ^ OP 9ït$ + " / 2 . 
It is still an open problem to obtain an asymptotic expansion for as(09 <o, A) 

that is uniformly valid for 0 near <o. 
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