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Let S(n, k) denote the Stirling numbers of the second kind, and let Kn be 
such that S(n, Kn) > S(n, k) for all k. Rota's problem [3] is to prove or dis­
prove the following: 

For all n, the largest possible incomparable collection of partitions of an n-
set contains S(n, Kn) partitions. 

An "incomparable collection" of partitions is one in which no partition in 
the collection is a refinement of some other partition in the collection. 

DEFINITION. Let S(n, k) denote the collection of all partitions of an n-
set into k nonempty blocks. If C Ç S(n, k), define Span(C) by 

Span(C) = {TT G S(n, k + 1): it is a refinement of some n' E C}. 

THEOREM. For all sufficiently large n, there is a collection C C S(n, f) 
such that 

(i) / + l=ifw , 
(ii) |Span(C)l < ICI, where \ \ denotes cardinality. 
Consequently, (S(n, ƒ + 1) - Span(C)) U Cis an incomparable collection 

with more than S(n, Kn) partitions. 

REMARKS. C consists of all n E S(«, /) having exactly / blocks of size <M 
and exactly ƒ - / blocks of size > M and < 2Af, where / and M are appropriately 
defined. 

The proof of the Theorem requires [2] to estimate ICI and |Span(C)l; and 
also requires [1] to know the approximate value of Kn. 
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