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Let F be a smooth transversely-oriented foliation of a compact, connected, 
oriented, Riemannian manifold Wn+l of constant sectional curvature = c. Let 
K¥: W —* R via Kf(pc) = the Gaussian curvature (defined below) of the leaf ln 

through x at x. For n = 2 this is classical Gaussian curvature. Let vol be the 
canonical volume on W, and define K^ by Volume (W) • Kv = fw K^vol. 

THEOREM 1. 

2V"2/Gft> — * 
0, n odd. 

THEOREM 2. Let « + 1 = 3 and suppose F, W, c are as above except that 
dW is nonempty and is a union of leaves of F. Then 

ƒ KFvol = 2c Volume(W) + $bW H vol' 

where H: bW —> Ris the mean curvature {computed with respect to the trans
verse orientation), and vol' is the canonical volume on dW. 

THEOREM 3. Suppose n + 1 = 3. Let F and W be as in the original hy
potheses with dW = 0 but assume the sectional curvatures of W lie between cx 

and c2. Then we have 2c\ < Kf < 2c2. 

DEFINITION OF GAUSSIAN CURVATURE. We define, for a Riemannian 
manifold I = ln, the function K: I —> R in two cases (which overlap): 

Case (i). n is even. In this case a local orthonormal frame on / gives rise 
to a matrix of curvature 2-forms, £2 = (fij.) defined locally. The Pfaffians of the 
local £1 agree on overlaps and so define a global «-form Pf(£2) on /. Letting v de
note the canonical volume form on / we set 

2n/2 • (n/2)\ 

(see [3, vol. V, pp. 417-420]). 
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Case (ii). Assume / is a hyper sur face of a flat Riemannian manifold W9 and 
that / is transversely oriented by a field of unit normals £. Then at each point x 
of / let Ax: Txl —» Txl be defined by Axv = -V„£. Then we define K(x) = 
det(Ax). (See [3, vol. IV, p. 96].) 

REMARKS. In the overlap of Cases (i) and (ii), viz. when / is an even-dimen
sional hypersurface of a flat manifold, the two definitions of K agree. If n is 
even then K is intrinsic to the geometry of /; if n > 3 is odd then K is intrinsic 
up to a global choice of sign [3, vol. IV, p. 96]. 

SKETCH OF PROOF OF THEOREM 1. We consider two cases: n odd and n 
even. 

(i) The case n is odd: 
Here x(W) = 0 and hence by Chern-Gauss-Bonnet [3, vol. V, p. 442] the 

constant curvature c = 0, i.e. W is flat. Without loss of generality we may assume, 
by taking a finite covering, that W is in fact a flat torus [1, p. 212]. 

Let Tp « Rn+1 denote the tangent space to W at some point p E W. A 
choice of unit normal vector field £ to the foliation F determines (by parallel 
translation in W) a Gauss map g : W —> Tp whose image lies of course in the 
unit sphere Sn C Tp. Think of dg as a map dg: W —» End(TW) via x h* dgx. 

Let ot(Ex) denote the rth elementary symmetric function of the eigenvalues 
of Ex, where Ex is any endomorphism Ex: Tx —• Tx. 

LEMMA. Kf(x) = on(-dgx), for all x E W. 

The proof is not difficult. 
Now for each t E R consider ht: W —> W defined by ht{x) = exp(/g(x)), 

or in other words ht(x) - x + tg(x) (by slight abuse of notation). A computa
tion shows that 

f Jht vol = f det(7 + tdg)vo\ or 

W Volume^ = Volume(H>) • [1 + a^dgyt + • • • + ân(dg)tn] 

where ot(dg) denotes the average over x E W of ot{dgx), and / denotes the Jaco-
bian. 

Since both sides of (*) are polynomials in t it follows that a((dg) = 0, / = 
1, . . . , n. 

COROLLARY. In the above case we have o((dg) = 0 for i = 1, . . . , n. In 
particular o2(dg) is a multiple of the leaf scalar curvature; hence the average leaf 
scalar curvature is 0 whenever W is flat. 

SKETCH OF PROOF OF THEOREM 1 (CONTINUED). 

(ii) The case n is even: 
The proof depends on the construction of certain globally defined w-forms. 

Let {01, . . . , 6n, 0" + 1} be a local adapted orthonormal coframe field (with 
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6n+l orthogonal to the leaves of F) and let {coj} be the associated Riemannian 
connection forms. Put 

<t>r = z i-W"?*}A • • •A uffrl)M°l2r) A ... A o°w 
oesn 

for 1 < r < n/2, where Sn denotes the symmetric group on {1, . . . , n} and 
(- l ) a is the sign of the permutation a. 

LEMMA. The n-forms <pr do not depend on the choice of orthonormal co-
frame {01} and hence are globally defined on W. 

The proof is an unpleasant calculation. 

LEMMA. For each n there exist constants br, 1 < r < n/2 such that if we 
set 

n(2 

* = S Mr tken 

d* = {KF - a„c"/2)vol where an = 2 " / ( „ " 2 ) • 

The proof is an even more unpleasant calculation. 
Integrating (**) over W readily yieldsKf = 2ncnl2/(n?2) as desired. 
REMARKS. By taking double covers we may prove Theorem 1 even if W is 

allowed to be nonorientable. If n is even then we may similarly drop the assump
tion that Fis transversely orientable. If « is odd, however, transverse orientabil-
ity is required in order that K^ be defined. 

Theorem 1 has been generalized in various ways in the recent paper of 
Rosenberg, Brito and Langevin [2]. Theorems 2 and 3 are proved using methods 
similar to Theorem 1. 
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