SOME ESTIMATIONS IN THE TOPOLOGY OF SIMPLY-CONNECTED ALGEBRAIC SURFACES

BY B. MOISHEZON

Communicated by R. T. Seeley, November 10, 1976

The simplest nontrivial oriented topological surface is the 2-dimensional torus. It is well known that any compact Riemann surface is topologically equivalent to the 2-sphere with handles attached, that is, to a connected sum of 2-toruses. We can consider this decomposition as corresponding to the canonical decomposition of the (skew-symmetric) intersection form of 1-homologies on the given Riemann surface.

In the case of simply-connected algebraic surfaces the intersection form of 2-homologies plays a fundamental role because it defines completely the homotopy type of the corresponding 4-dimensional topological manifold (see [1], [2]).

Performing a σ -process on the given simply-connected algebraic surface V we obtain an algebraic surface V' which contains a 2-dimensional homology class with self-intersection equal -1 (which is an odd number). Then it is well known (see [3], [4]) that there exists a basis of $H_2(V', \mathbf{Z})$ such that the corresponding intersection matrix is diagonal. The corresponding "elementary blocks" $\|+1\|$ and $\|-1\|$ are the intersection matrices of the simplest nontrivial oriented simply-connected 4-manifolds:

P= complex projective plane with its usual orientation and Q= complex projective plane with orientation opposite to the usual. From the homotopy classification theorem [1], [2], it follows that V' is homotopy equivalent to a connected sum of P's and Q's. Of course, the "ideal situation" (analogous to the mentioned above topological decomposition of compact Riemann surfaces), which we could expect, is the existence of a homeomorphism of V' to this connected sum. However, there are some nondirect indications that V' is homeomorphic to a connected sum of P's and Q's if and only if V' is a rational algebraic surface. (This conjecture was formulated in [5].) The question is still open, but assuming the conjecture we can consider as a realistic aim only the problem of estimating how "far" topologically is the given nonrational simply-connected algebraic surface from an "ideal" topological model, that is, from a connected sum of P's and O's.

In [6] Wall proved the following theorem: If M_1 , M_2 are simply-connected compact 4-manifolds, which are homotopically equivalent, then there exists

an integer $k \ge 0$ such that $M_1 \# k(S^2 \times S^2)$ is diffeomorphic to $M_2 \# k(S^2 \times S^2)$ (# is is the connected sum operation).

It follows almost immediately from this result that if M is a simply-connected compact 4-manifold, then there exists an integer $k \ge 0$ such that $M \# (k+1)P \# k \cdot Q$ is diffeomorphic to P # mQ for some P # mQ.

After the proof of his theorem Wall writes the following [6, p. 147]: "We remark that our results is a pure existence theorem; We have obtained, even in principle, no bound whatever on the integer k".

As it was remarked in [5], the operation M # P (resp. M # Q) where M is an oriented 4-manifold could be considered as performing of certain blowing up of some point on M. We call this blowing up $\overline{\sigma}$ -process (resp. σ -process). (The exact definition of σ -process and $\overline{\sigma}$ -process is the following: In a small enough neighborhood N_x of a point $x \in M$ we can always take local coordinates giving N_x a complex structure. This complex structure will then have an orientation the same as that of M or opposite to that of M. Performing a classical σ -process using the local complex coordinates of N_x , we get an operation which in the first case we call " σ -process" and in the second case " $\overline{\sigma}$ -process".)

We say that an oriented simply-connected 4-manifold W is completely decomposable (resp. almost completely decomposable) if W (resp. W # P) is diffeomorphic to P # mQ for some P, P is diffeomorphic to P # mQ for some P, P is diffeomorphic to P # mQ for some P is diffeomorphic to P # mQ for some P is diffeomorphic.

Let M be an oriented compact simply-connected 4-manifold. For $(k_1, k_2) \in \mathbb{Z} \times \mathbb{Z}$, $k_1 \geqslant 0$, $k_2 \geqslant 0$, let $M(k_1, k_2)$ be a 4-manifold obtained from M by k_1 $\overline{\sigma}$ -processes and k_2 σ -processes. Denote by $\mathcal{W}(M) = \{(k_1, k_2) \in \mathbb{Z} \times \mathbb{Z} | k_1 \geqslant 0, k_2 \geqslant 0, M(k_1, k_2) \text{ is completely decomposable}\}$. It follows from the theorem of Wall that $\mathcal{W}(M) \neq \emptyset$.

An important geometrical problem is to define minimal elements of W(M) (in any natural sense). A certain step for solving this problem could be the construction of some elements of W(M) in explicit form, say in terms of the 2-dimensional Betti number and of the signature of M. We can prove that such a construction is possible when M admits a complex structure. The main result is

THEOREM A. Let M be a compact simply-connected 4-manifold which admits a complex structure. Take an orientation on M corresponding to certain complex structure on it. Let K(X), L(X) be cubic polynomial defined as follows:

$$K(X) = \widetilde{K}(9(5X+4)) - X, \qquad L(X) = \widetilde{L}(9(5X+4)),$$
where $\widetilde{K}(t) = t(t^2 - 6t + 11)/3$, $\widetilde{L}(t) = (t-1)(2t^2 - 4t + 3)/3$

$$(K(X) = 30375X^3 + 68850X^2 + 52004X + 13092,$$

$$L(X) = 60750X^3 + 141750X^2 + 110265X + 28595).$$

Denote by b_+ (resp. b_-) the number of positive (resp. negative) squares in the inter-

section form of M and let $k'_1 = K(b_+), k'_2 = \max(0, L(b_+) - b_-)$. Then the pair $(k'_1, k'_2) \in \mathcal{W}(M).$

REMARKS ABOUT THE PROOF OF THEOREM A. From the Kodaira classification of compact complex surfaces [7] it follows that if M is a simply-connected compact complex surface, then there exists a nonsingular projective-algebraic complex surface V such that V is diffeomorphic to M and one of the following three possibilities holds:

- (a) V is rational;
- (b) V is elliptic;
- (c) V is of general type.

In case (a) our theorem is evident. In case (b) we can prove a much stronger result.

THEOREM B. Any simply-connected elliptic surface V is almost completely decomposable. (That is, $(1,0) \in W(V)$.)

For the case (c) we first prove the following comparison theorem for topology of projective algebraic surface of given degree n and nonsingular hypersurface of degree n in $\mathbb{C}P^3$:

Theorem C. Let V_n be a projective algebraic surface of degree n embedded in $\mathbb{C}P^N, N \ge 5$, such that V_n is not contained in a proper projective subspace of $\mathbb{C}P^N$. Suppose that V_n is nonsingular or has as singularities only rational doublepoints. Let h: $\widetilde{V}_n \to V_n$ be a minimal desingularization of V_n (that is, \widetilde{V}_n has no exceptional curve of first kind s such that h(s) is a point on V_n). Suppose $\pi_1(\widetilde{V}_n) = 0$. Denote by Y_n the diffeomorphic type of a nonsingular hypersurface of degree n in $\mathbb{C}P^3$.

Then

(i)
$$b_+(V_n) < b_+(Y_n), b_-(V_n) < b_-(Y_n);$$

- (i) $b_{+}(\widetilde{V}_{n}) < b_{+}(Y_{n}), b_{-}(\widetilde{V}_{n}) < b_{-}(Y_{n});$ (ii) $\widetilde{V}_{n} \# [b_{+}(Y_{n}) b_{+}(\widetilde{V}_{n}) + 1] P \# [b_{-}(Y_{n}) b_{-}(\widetilde{V}_{n})] Q$ is diffeomorphic to $Y_n # P$.
- In [5] it was proved that $Y_n # P$ is completely decomposable. Thus we need only some estimation of a possible minimal degree for projective embeddings of V in terms of $b_+(V)$, $b_-(V)$. We obtain such an estimation from Bombieri's results on pluricanonical embeddings of algebraic surfaces of general type [8].

REMARK TO THEOREM B. Note that Theorem B together with results of [5], [9], [10] show that all big explicit classes of simply-connected algebraic surfaces considered until now have the property that their elements are almost completely decomposable 4-manifolds. That is, the "theoretical" Thereom A gives much weaker results than our "empirical" knowledge.

The interesting question is, how far we can move with such "empirical achievements" in more general classes of simply-connected algebraic surfaces.

BIBLIOGRAPHY

- 1. L. S. Pontryagin, On the classification of four-dimensional manifolds, Uspehi Mat. Nauk. (N.S.) 4 (1949), no. 4 (32), 157-158. (Russian) MR 11, 194.
- 2. J. H. C. Whitehead, On simply connected, 4-dimensional polyhedra, Comment. Math. Helv. 22 (1949), 48-92. MR 10, 559.
- 3. J. W. Milnor and D. Husemoller, Symmetric bilinear forms, Ergebnisse Math Grenzgebiete, Band 73, Springer-Verlag, Berlin and New York, 1973.
- 4. J.-P. Serre, Forms bilinéaires symétriques entières à discriminant ± 1, Séminaire Henri Cartan, 1961/62, Exposé 14, Secrétariat mathématique, Paris, 1964. MR 28 #3443.
- 5. R. Mandelbaum and B. Moishezon, On the topological structure of non-singular algebraic surfaces in $\mathbb{C}P^3$, Topology 15 (1976).
- 6. C. T. C. Wall, On simply-connected 4-manifolds, J. London Math. Soc. 39 (1964), 141-149. MR 29 #627.
- 7. K. Kodaira, On the structure of complex analytic surfaces, IV, Amer. J. Math. 90 (1968), 1048-1066. MR 39 #473.
- 8. E. Bombieri, Canonical models of surfaces of general type, Inst. Hautes Études Sci. Publ. Math. 42 (1973), 171-219. MR 47 #6710.
- 9. R. Mandelbaum and B. Moishezon, On the topological structure of simply-connected algebraic surfaces, Bull. Amer. Math. Soc. 82 (1976), 731-733.
- 10. R. Mandelbaum, Algebraic surfaces and irrational connected sums of four manifolds, Topology (to appear).

DEPARTMENT OF MATHEMATICS, TEL-AVIV UNIVERSITY, RAMAT-AVIV, ISRAEL