OBSTRUCTION THEORY IN 3-DIMENSIONAL TOPOLOGY: CLASSIFICATION THEOREMS

BY HARRIE HENDRIKS

Communicated by T. A. Chapman, January 24, 1977

We consider the classification up to homotopy of homotopy equivalences of compact 3-manifolds. Given two compact 3-manifolds (with base point and CW-decomposition) (M, m) and (N, n), in [3] we found an algebraic criterion for the existence of a degree 1 map $f: (M, \partial M) \to (N, \partial N)$ extending a given map f^1 defined on the relative 1-skeleton $(M, \partial M)^1$. Here we consider the space $H^1(M, m)$ of degree 1 homotopy equivalences $f: (M, m) \to (M, m)$ such that $f|\partial M = \operatorname{Id}$ and f is homotopic rel $\partial M \cup \{m\}$ to a map coinciding with the identity on $(M, \partial M)^1$. If $\partial M = \emptyset$, it is equivalent to say that f induces the identity automorphism of $\pi_1(M, m)$. (If $\partial M \neq \emptyset$, we assume that $m \in \partial M$.) Important results are the following.

1. Following Waldhausen e.a. [6] a homotopy equivalence of P^2 -irreducible (closed) sufficiently large 3-manifolds is homotopic to a homeomorphism unique up to isotopy. Our result indicates that the exclusion of 2-sided projective planes is necessary. Indeed, suppose M is the connected sum of two nonsimply connected 3-manifolds, then we have

THEOREM ([2]). If M contains 2-sided projective planes, M admits a self homotopy equivalence, in $H^1(M, m)$, which is not homotopic to a homeomorphism rel ∂M .

Recall that all elements of $H^1(M, m)$ are simple homotopy equivalences (in the sense of Whitehead).

On the other hand, let S be an embedded 2-sphere in M with collar $S \times [0, 1]$. Then the *rotation along* S is the homeomorphism in $H^1(M, m)$ defined by the identity outside $S \times [0, 1]$ and by a generator of $\pi_1 SO(3)$ within $S \times [0, 1]$.

THEOREM ([4]). Let M be a 3-manifold which does not contain 2-sided projective planes, then every self homotopy equivalence in $H^1(M, m)$ is homotopic rel $\partial M \cup \{m\}$ to a rotation along a sphere.

2. Let R be the set of 2-spheres S in M such that we can express $M = M_1 \cup M_2$, where $M_1 \cap M_2 = S$, and where $M_1 \cup_S D^3$ is a connected sum of closed manifolds, each either with finite fundamental group whose 2-Sylow

AMS (MOS) subject classifications (1970). Primary 55D10, 55G37, 57A10.

subgroup is cyclic or homotopy equivalent to a S^2 or P^2 fibration over S^1 .

THEOREM ([4]). The rotation along an embedded 2-sphere S is homotopic to the identity rel ∂M if and only if $S \in \mathbb{R}$.

For nonseparating spheres S, this is contained in [5].

3. The composition in $H^1(M, m)$ defines a multiplication in $\pi_0 H^1(M, m)$. THEOREM. $\pi_0 H^1(M, m)$ is a group of exponent 2.

More completely, let $\Lambda = \{\lambda \in \pi_1(M, m); \lambda^2 = e, \lambda \text{ reverses the orientation} \}$. By [1] there exists for each $\lambda \in \Lambda$ an immersion $\sigma_{\lambda} \colon (S^2, *) \longrightarrow (M, m)$ such that $\sigma_{\lambda}(S^2)$ is a (2-sided) projective plane carrying the loop λ . Let $W(\Lambda)$ denote the \mathbb{Z}_2 -module with generators $\Lambda \times \Lambda$ and relations $\langle \lambda, \mu \rangle = \langle \mu, \lambda \rangle = \langle \xi \lambda \xi^{-1}, \xi \mu \xi^{-1} \rangle = \langle \lambda, \mu \lambda \mu \rangle$ for every $\lambda, \mu \in \Lambda$ and $\xi \in \pi_1 M$. Let R denote the $\pi_1 M$ submodule of $\pi_2 M$ generated by R.

MAIN THEOREM ([4]). Suppose $\pi_2 M \neq 0$. There is an exact sequence of \mathbb{Z}_2 modules:

 $0 \longrightarrow \mathbf{Z}_2 \otimes_{\pi} (\pi_2 M)/R \xrightarrow{r} \pi_0 H^1(M, m) \longrightarrow W(\Lambda) \oplus \mathbf{Z}_2 \otimes_{\pi} \mathbf{Z}[\Lambda] \longrightarrow 0,$ where \otimes_{π} denotes the tensor product over $\mathbf{Z}[\pi_1 M]$.

If $\sigma\colon (S^2, *) \longrightarrow (M, m)$ is an embedding or an immersion with image a 2-sided projective plane, $r(1\otimes \sigma)$ is represented by the *rotation along* $\sigma(S^2)$. Let $\lambda, \mu \in \Lambda$, and suppose $f\colon M \longrightarrow M$ is a map different from the identity only in a 3-ball where it differs by $\sigma_{\lambda} \circ Hopf \in \pi_3 M$, where Hopf denotes the Hopf fibration $S^3 \longrightarrow S^2$ (resp. by the Whitehead product $[\sigma_{\lambda}, \sigma_{\mu}]$). Then the arc component of f is mapped to $1\otimes \lambda$ (resp. $\langle \lambda, \mu \rangle$).

BIBLIOGRAPHY

- D. B. A. Epstein, Projective planes in 3-manifolds, Proc. London Math. Soc. (3)
 (1961), 469-484. MR 27 # 2968.
- 2. H. Hendriks, Une obstruction pour scinder une équivalence d'homotopie en dimension 3, Ann. Sci. École. Norm. Sup. (4) 9 (1976), 437-467.
- 3. ——, Obstruction theory in 3-dimensional topology: an extension theorem, Report 7617, Nijmegen (1976); J. London Math. Soc. (to appear).
- 4. ——, Applications de la théorie d'obstruction en dimension 3, available as Publ. math. d'Orday N° 133-7535 (1975); also, Mémoire Soc. Math. France (to appear).
- 5. L. Pontryagin, A classification of mappings of the three-dimensional complex into the two-dimensional sphere, Réc. Math. [Mat. Sbornik] N. S. 9 (51) (1941), 331-363. MR 3, 60.
- 6. G. P. Scott, On sufficiently large 3-manifolds, Quart. J. Math. Oxford Ser. (2) 23 (1972), 159-172; Correction, ibid (2) 24 (1973), 527-529. MR 52 # 4295.

 ${\bf MATHEMATISCH\ INSTITUUT,\ KATHOLIEKE\ UNIVERSITEIT,\ NIJMEGEN,\ NEDERLAND}$

¹ $\pi_1(M, m)$ acts on Λ by conjugation.