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Hubble constant (parameter), nor is there any indication as to how the 
chronometric theory enables one to study the variation of this quantity with 
distance. Thus it is difficult to evaluate the claim (cf. p. 118) "a further 
advantage of the chronometric theory over the expansion-theoretic model is 
that it reconciles the different values (of the Hubble constant) on the basis of 
different distances to the objects under observation". 

I found this a difficult book to read in part because various definitions and 
derivations were omitted. Nevertheless, I consider that the comparison made 
above between chronometric theory and general relativistic cosmology an 
accurate one. I do not agree with comments made by Segal about general 
relativity and its degree of experimental verification. 

This book has not convinced me that chronometric theory is a replacement 
for general relativistic cosmology, a branch of a theory which contains 
Newton's theory of gravitation as a limiting case and which provides observed 
corrections to that theory. 
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The theory of finite (and generally compact) groups of transformations of 
manifolds had its origins slightly over half a century ago in the work of 
Kerékjârto [34] and Brouwer [12] showing that periodic transformations of the 
2-disk and 2-sphere are topologically equivalent to rotations. (An error in the 
original proof was later corrected by Eilenberg [20].) Similar results for actions 
of compact connected groups on 3-space were proved by Montgomery and 
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Zippin [37], [38], [39]. Perhaps it was thought at that time that all compact 
groups of transformations of higher dimensional disks, spheres and euclidean 
spaces are equivalent to groups of orthogonal transformations, but the 
difficulties in attempting to prove this were clearly recognized. In a remarkable 
series of papers [49], Paul Smith showed that if one lowered one's expectations, 
such results were obtainable. In fact, he showed that if one restricted attention 
to groups of prime order/? then the mod/7 homological structure of actions on 
disks, spheres and euclidean spaces completely resembles the linear case. Since 
/7-groups are solvable, much of this goes over immediately to their actions. 
Later, analogous results for toral groups were proved by Conner [15] and 
Floyd [23]. 

It appears that in the early days it was felt that the restriction to /^-groups 
and to mod p cohomology were just defects of the methods employed. 
However, in 1950 Floyd [21] produced examples which indicated strongly that 
these restrictions were essential to the results. These were followed shortly by 
the first example of a nonorthogonal (in fact "wild") action on a sphere, due 
to Bing [3]. Later Floyd, in [22] and [23], improved his examples and 
constructed a map of period 6 on a 41-dimensional sphere whose fixed point 
set was not a homology sphere for any coefficients. (It also follows that the 
fixed set of the map of period 2 inside this is not a mod 3 homology sphere, 
etc.) There have been several improvements in such examples since then, 
notably the reviewer's similar examples in 1963 on the 5-sphere (and higher 
spheres) [6] and the alternative description of them due to Brieskorn [11]. For 
a full discussion of these matters see [10]. 

More recently, the remarkable work of L. Jones [32], [33] has shown that 
there is a "converse" to the Smith theorems. That is, he showed that, under 
certain mild restrictions, a mod/? homology sphere (resp. disk) can be realized 
as the fixed point set of a map of period p on a sphere (resp. a disk). Going in 
a different direction, the equally remarkable work of R. Oliver [40], [41] has 
shown that "sufficiently complicated" finite groups can act without stationary 
points on a disk, and, in fact, he gives very simple conditions in terms of euler 
characteristics which are necessary and sufficient for a given complex to be the 
fixed point set in such an action on a disk. He has recently extended this 
result to the case of all nonabelian compact connected Lie groups [42]. The 
only previous example of this type was for the icosahedral group, due to Floyd 
and Richardson [24]. In still another direction, Edmonds and Lee [19] have 
recently shown that a closed smooth «-manifold M (not necessarily connected) 
can be the fixed point set of a periodic diffeomorphism on euclidean space iff 
its tangent bundle stably admits a complex structure. They also showed that a 
periodic map on Rn of nonprime power order can have different representa­
tions at two isolated fixed points. 

In the meantime, several investigators advanced the original Smith setting 
of studying mod p homological aspects of actions of /?-groups. Borel [5] and 
Swan [53] developed methods for proving such theorems which had the 
advantage of providing a possible utilization of the cohomology ring structure. 
This was first exploited by Su [50] in studying actions on products of two 
spheres and slightly later by the reviewer [7] in studying actions on projective 
spaces and Poincaré duality spaces. These are the types of matters which occupy 
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a large portion of the present book. In the case of actions on a (homological) 
product Sm X Sn, the author considers (Theorem IV.4) only the easiest case 
of even m and n and odd /?, and restricts the discussion to the determination 
of the four possibilities for the mod p cohomology ring of the fixed point set. 
The "proof" contains some pretty pictures, but will probably be quite 
mysterious to most readers (as it is, indeed, to this reviewer). He states that the 
result still holds for p = 2, provided "E2 = E^'% but in fact there is actually 
an additional possibility when p = 2; see [10, p. 410]. Certainly the most 
interesting aspects of the study of actions on Sm X Sn are the various known 
examples and the several known further restrictions regarding the possibilities 
for the fixed point set. Thus it is curious that the author's bibliography does 
not even list reference [10]. One curious result in this direction is that the fixed 
point set pt. + CP2 cannot occur for an involution (i.e., a map of period 2) on 
an actual product SmxSn of spheres unless (m,n) = (3,4). (There are, 
similarly, six possibilities for the fixed point set pt. +QP2 and none for the 
disjoint union of a point and the real or Cayley projective planes; see [10, p. 
414].) Since this is the one case for which no examples have been produced on 
actual products of spheres, perhaps it is reasonable to give here a simple 
construction of such an involution on S3 X S4 . Consider the involution 
T: A H> A~x = Â* on SU3. Its fixed set is 

F = {/} U(conjugates of 
[1 

0 
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0 
-1 
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0 1 
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(This part is due to Su [50].) Let M = {A = (au) E SU3\ahl is real}. If 
q: SU$ -* S5 is the S^-fibration taking the matrix A to its first column, then 
M = q~l(S4) and, hence, M » S3 X S4 . Of course, T acts on M and it is 
easily seen that M contains all of F, so that this provides the desired example. 

The strongest general result in the cohomological theory of transformation 
groups is the fact that components of fixed point sets of actions of /^-groups 
on mod/? Poincaré duality spaces are also mod/? Poincaré duality spaces. This 
was originally conjectured by Su [50] and was proved shortly thereafter, with 
some strong restrictions, by the reviewer [7]. The full result was finally proved 
by Chang and Skjelbred [13] and independently, but slightly later, by the 
reviewer [9]. Curiously, the book under review misreferences the proof by 
Chang and Skjelbred and omits any reference at all to [9]. The ultimate 
theorem along these lines would be to show (under appropriate assumptions 
on the fundamental group) that the fixed point set is mod p equivariantly 
"Poincaré embedded" in the homotopy category. Such a result has been 
claimed by Hodgson [25], but at least two experts on Poincaré complexes have 
expressed doubts to me about his proof. Strong evidence for the validity of 
such a result is provided by the "topological Schur Lemma" of Chang and 
Skjelbred [14] and Allday and Skjelbred [1]. A curious example, worthy of 
contemplation in this connection, is a map of period 3 on a finite complex, 
homotopy equivalent to S3 X S3

9 and having CP2 as fixed set; see [10, p. 421]. 
The algebraic technique of localization was introduced into the theory of 
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group actions in the work of Atiyah and Segal on equivariant ^-theory; see 
[48]. It was put to use in ordinary equivariant cohomology by the author [31] 
and by Quillen [44]. The present book deals with that point of view, and 
presumably makes available the material in the author's difficult to locate 
paper [31], a reference that I have never seen. 

Another active area in compact transformation groups, which is also 
touched on in the present book, is that of the degree of symmetry of a 
manifold; that is, the largest dimension of a compact Lie group that can act 
(differentiably, or topologically, etc.) on a given manifold. The first results in 
this direction were due to the author [29] and his brother [26], [27] who proved 
that the examples previously constructed by the reviewer [6], when augmented 
by an extra circle group factor evident in the Brieskorn description of these 
actions, provide the largest groups that can act smoothly on an exotic sphere. 
The book also discusses some more recent interesting work of the author on 
this topic. It is unfortunate that the book does not also discuss the most 
striking recent results on degree of symmetry. For actions on homotopy 
spheres these include several papers by Schultz, such as [45], [46], [47], and the 
startling result of Lawson and Yau [35] that a homotopy sphere not bounding 
a spin manifold cannot admit a smooth action of a connected nonabelian Lie 
group. For actions on more general manifolds there is the fundamental result 
of Atiyah and Hirzebruch [2] that a closed spin manifold whose >4-genus is 
nonzero has no circle action (and hence has zero degree of symmetry). 
Another striking thing that could have been mentioned in the book is the 
existence of totally nonsymmetric manifolds (not even admitting a finite group 
of symmetries). The first example of this was given by Bloomberg [4] following 
fundamental work of Conner and Raymond [17]. Different examples have 
since been given by Conner, Raymond and Weinberger [18]. 

Large portions of the present book are virtually reprintings of several of the 
author's papers. (Thus it is no surprise to find, for example, that the "Theorem 
B" referred to twice on p. 126 is not to be found under that designation in the 
book, but rather is found in the paper this material comes from.) In a few 
cases, the reader is referred to the author's papers for proofs. Even when 
proofs are repeated in the book there has been no effort to make them more 
understandable. 

The exposition in the book is frequently sloppy. We shall conclude by 
discussing some of the more striking occurrences of this. 

At the end of Chapter I (pp. 15-16) the author attempts to prove the 
important standard facts about maximal tori of compact Lie groups by 
deriving them from the principal orbit theorem. A close look will show, 
however, that he asserts, in the proof of 1.8.1, that each element of the group 
lies in a torus; an assertion that simply does not follow from his previous 
discussion. Since this fact is precisely the most difficult and crucial item in 
proving these results, this proof is effectively scuttled. 

In Theorem II.3 the author asserts that the Weyl group of a compact Lie 
group G acts on the maximal torus as a group generated by reflections. But, 
by definition, the cuts made by the fixed point sets of "reflections" are 
supposed to disconnect the manifold acted upon, whereas in fact, these cuts, 
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for the Weyl group acting on the torus, are usually connecticuts. Because of 
this mistake, the reader is led to believe that the map G -» G/ Ad has a cross 
section and the definition of the "Cartan polyhedron" (p. 22) is based on this 
misunderstanding. This is simply not the case for the centerless versions of 
An, n > 2, where G/Ad is a cone over a lens space. This nonsense also effects 
the "proof" of Weyl's theorem (II.9) that the universal covering group of a 
compact semisimple Lie group is compact. (In any case, this proof is actually 
an outrageous "proof by bluff". A beginner could not possibly understand it 
and may well ask where the hypothesis of semisimplicity is used.) 

On pp. 48-49 the author attempts to prove that, for a toral action on X, if 
HQ{X\Q) is the rational equivariant cohomology of X and if HQ(X;Q) 
®//*(pt.;ô) ^0 *s generated as an /?0-algebra by q elements (where R0 is the field 
of quotients of //<? (pt.; (?)), then each component F of the fixed set XG has 
H*(F;Q) generated by at most q homogeneous elements as a ö-algebra. 
(Also, an analogous result for Z^-tori is considered.) In doing this he considers 
changes of generating sets by two "elementary operations". One of these 
consists of replacing a generator by the product of that generator with an 
invertible element. However, the author's invertible elements belong to the 
algebra and not to the base field R0, and thus this step needs justification. This 
justification can be given in this case, but the reader is given no hint that there 
is something to prove here. Later in the proof, the author writes out an element 
of a tensor product in which the term Xik <8> aik really should be a sum of such 
terms. This point seems to require considerably more justification and, in fact, 
I don't know how to fix it without weakening the conclusions of the Theorem 
and localizing in a different way. Fortunately, an elegant proof of this result 
has been given by V. Puppe [43]. Since Puppe's proof, as written, does not 
quite prove the full result stated in the book under review, and since one point 
in it appears to be obscure to some readers, perhaps it is reasonable to briefly 
indicate here a slight modification of the crucial point of it. Suppose that A is 
a graded connected algebra over the field k and let K be an extension field of 
k. Suppose that A ®k K is generated by q nonhomogeneous elements as a K-
algebra. Then the K-vector space of indécomposables Q(A % K) « Q(A) 
®k K clearly has dimension < q. Hence dim^g^) < # a n d thus there are q 
homogeneous elements of Q(A) which span it. These can be lifted back to q 
homogeneous elements of A and it follows from an easy and well-known 
lemma of Milnor and Moore [36, Proposition 3.8] that these q elements 
generate A as a /c-algebra. The application of this (with A = H*{F\k) and 
K = /?0) to the result on fixed point sets is immediate. 

In Chapter V the author attempts to determine the connected principal orbit 
type of a topological action of a compact Lie group on an acyclic cohomology 
manifold. It is virtually reprinted from [30]. It contains a number of quite good 
ideas and results, but also suffers badly from numerous deficiencies in the 
proofs. For example, the proof of Theorem V.2 does not seem sufficiënt, and, 
in particular, it is not clear how the case G = Sp„, / = 2AÎ — 1 (with a circle 
as principal isotropy group) can be ruled out. Even more seriously, the 
conclusions of the Corollaries to Theorem V.5 cannot be drawn from the 
proofs given. (Curiously, this fact was already pointed out in a paper of R. 
Sullivan [52] published before the present book went to the printer.) In the 
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proof of Theorem V.6, many cases are said to be ruled out by means of 
Lemma 1 on p. 85. However, this lemma holds for trivial reasons in all cases 
and cannot possibly be used to rule out anything. The trouble is that the 
author mistakenly assumes a certain rational number (k in the examples on p. 
86 and / in the proof on p. 88) must be an integer. There does not seem to be 
any justification for this. There also appear to be a number of cases left 
unconsidered in the list of possible exceptions on p. 90. For example, there are 
the possibilities G = C4 and iï' = 2W(9X + 92 + 03 + 04); or G «= C4 and 
£2' = w{9x + 92 + 03 + 04) + W(9X); or G = Cr and fl' = (2r ~ \)W{9X)\ or 
finally G — B2 and fi' = W(29x + 02). (At least one of these could be ruled 
out, but certainly with no less consideration than that given to the five cases 
on p. 90.) When an author is this sloppy with his proofs and yet expects us to 
believe that he has correctly done a considerable amount of undisplayed case 
by case checking in representation theory and other matters, I, for one, refuse 
to accept it. 

In Theorem V.8 it is asserted that the fixed point set of a certain type of 
topological action is an acyclic cohomology manifold. One crucial point in the 
proof relies on the statement that the author's theorem [28] on groups of 
diffeomorphisms generated by reflections can be modified to yield the desired 
result in the topological case. Probably one can indeed prove that the fixed 
point set is nonempty and acyclic, and even that it is cohomologically locally 
connected, in this way. However, the assertion that it is a cohomology 
manifold is a far more difficult matter and I don't feel there is any justification 
for it at present. This also effects the proof of Theorem V.10. 

On p. 146 the author conjectures that for a compact connected simple Lie 
group G, any nontransitive action of G on its underlying manifold must be 
cohomologically identical with the adjoint action. There is, however, the 
simple counterexample of G = SU$ and the action A: B H> ABA*. Generally, 
if <p is an outer automorphism of G then g: h H> gh(p(g~{) gives a counterex­
ample. This also settles problem 6 on p. 133 in the negative. 

The names of Conner, Floyd and Montgomery (see [16] and [10, pp. 61-62]) 
should have been referred to in connection with the construction of the 
fundamental example on p. 44. Theorem IV.5 on p. 53 and p. 137 should have 
been credited to the reviewer [8, p. 879]. The discussion on p. 134 is based on 
recent fundamental work of D. Sullivan [51] but his name is not even 
mentioned. There are a number of similar amenities that could have materially 
contributed to the exposition in the book. 

Despite these and other shortcomings, the book may well serve as a useful 
source of ideas and problems for workers in the field. 
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In the introduction to his lecture notes on Methods of mathematical physics, 
K. O. Friedrichs observes that most of the fundamental problems of analysis 
have their origins in physics and that, of these problems, a high percentage are 
concerned with differential equations. As he points out, the fundamental laws 
on which problems in the sciences are based are formulated in terms of partial 


