A TOPOLOGICAL DISK IN A 4-MANIFOLD CAN BE APPROXIMATED BY PIECEWISE LINEAR DISKS

BY GERARD A. VENEMA

Communicated by T. A. Chapman, December 2, 1976

Several approximation theorems for embeddings of codimension 2 cells are announced here and the proofs are outlined. More detailed proofs will appear elsewhere [5].

1. Introduction. Our main theorem asserts that any topological embedding of a disk (2-cell) in a piecewise linear 4-manifold can be approximated arbitrarily closely by locally flat, piecewise linear embeddings. For codimension 2 cells in general, we do not prove as strong a theorem. If M^n is a piecewise linear (PL) manifold and the topological embedding $D: I^{n-2} \longrightarrow M^n$ has the property that there is some open set $U \subset I^{n-2}$ such that D|U can be ϵ -approximated for every $\epsilon > 0$, then we show that D can be ϵ -approximated for every $\epsilon > 0$. A corollary is that a piecewise linear, codimension 2 cell can be approximated by locally flat (n-2)-cells in all dimensions.

If $D: I^{n-2} \to M^n$ is the topological embedding, the approximation can be chosen to agree with D on ∂I^{n-2} in both the theorems providing that $D|\partial I^{n-2}$ is PL and $D(\partial I^{n-2}) \subset \text{Int } M$. This can be accomplished simply by pushing the boundary of the approximation to the boundary of D with a small ambient isotopy—using [2] in case n=4 and [3] in case $n \geq 5$. However, if $D(\partial I^{n-2}) \subset \partial M$, the approximation cannot agree with D on the boundary. It is also not possible to replace $\epsilon > 0$ with a function $\epsilon(x) > 0$ with $\epsilon(x) \to 0$ as $x \to \partial M$. For example, the cone over the trefoil knot in the boundary of E_+^4 cannot be approximated in this way. In fact, the trefoil knot does not bound any locally flat PL disk in E_+^4 [4].

2. Statement of the theorems.

THEOREM 1. If $D: I^2 \to M^4$ is a topological embedding of a disk into a PL 4-manifold, then D can be e-approximated by a locally flat PL embedding $E: I^2 \to M^4$ for every $\epsilon > 0$.

THEOREM 2. Suppose M^n is a PL n-manifold and D: $I^{n-2} o M^n$ is a topological embedding. If there exists an open set $U \subset I^{n-2}$ such that D|U has

Copyright © 1977, American Mathematical Society

AMS (MOS) subject classifications (1970). Primary 57A15, 57A35, 57C55, 57C35; Secondary 57C30.

Key words and phrases. Topological embeddings, codimension 2 cells, 4-space, piecewise linear approximations, locally flat approximations.

the property that D|U can be ϵ -approximated by locally flat PL embeddings for every $\epsilon > 0$, then D has the same property.

COROLLARY. If $D: I^{n-2} \to M^n$ is a PL embedding, then D can be ϵ -approximated by locally flat PL embeddings for every $\epsilon > 0$.

3. Sketch of the proof of Theorem 1. Begin by choosing $\epsilon' > 0$ and a partition $0 = a_k < a_{k-1} < \cdots < a_1 = 1$ of I = [0, 1] such that if $E: I^2 \longrightarrow M^4$ is any embedding satisfying (1) $E(x \times I) \subset N_{\epsilon'}(D(x \times I))$ for every $x \in I$ and (2) $E(I \times [a_{i-1}, a_i]) \subset N_{\epsilon'}(D(I \times [a_{i-1}, a_i]))$ for each i, then $d(D, E) < \epsilon$. One of the sets $D(x \times I)$ or $E(x \times I)$ will be called a *fiber*. The idea of the proof is to find a sequence of locally flat PL embeddings E_0, \ldots, E_k so that each fiber of E_j is near the corresponding fiber of D for every j and so that E_{j+1} approximates D on one more of the strips $I \times [a_{i-1}, a_i]$ than E_j does.

Let $E: I \times 0 \longrightarrow M$ be a PL approximation of $D|I \times 0$ given by general position. Extend E to $E: I \times I \longrightarrow M$ so that each fiber of E is very short. Consider the homotopy of $E(I \times 1)$ to $D(I \times 1)$ obtained by deforming $E(I \times 1)$ to $D(I \times 0)$ and then moving along fibers of D. Using general position we can make the track of this homotopy miss $E(I \times 0)$. By [1] there is an ambient isotopy which pushes $E(I \times 1)$ near to $D(I \times 1)$, keeps $E(I \times 0)$ fixed, and moves parallel to fibers of D. Let E_0 be the embedding obtained by composing E and this isotopy.

Let U be a neighborhood of $D(I \times [0, a_2])$ and V be a neighborhood of $D(I \times [a_2, a_1])$. To get E_1 , we want to pull $E_0(I \times [a_2, a_1])$ into V with an isotopy which moves parallel to fibers of D and keeps $E(I \times [0, a_2])$ near U. Consider the 2-skeleton U^2 of U. By general position, $U^2 \cap E_0(I \times [a_2, a_1])$ is a finite number of points. Associated with each of the points there is a shadow down to $E(I \times a_2)$. We use the techniques of [2] to push these shadows out of V. After this has been done, we can make $E_0(I \times [a_2, a_1]) \cap U^2 = \emptyset$ by simply pushing the a_2 level out over these points staying right on the disk. Now use [1] again to engulf the dual 1-skeleton of U keeping $E_0(I \times 0)$ fixed. The inverse of the engulfing isotopy pulls the image of $I \times [a_2, a_1]$ into V and E_1 is defined as the composition of the maps described. This process is continued inductively.

REFERENCES

- 1. R. H. Bing, Vertical general position, Geometric Topology (Proc. Conf., Utah, 1974), Lecture Notes in Math., vol. 438, Springer-Verlag, Berlin and New York, 1975, pp. 16-41. MR 50 #14751.
- 2. R. H. Bing and J. M. Kister, Taming complexes in hyperplanes, Duke Math. J. 31 (1964), 491-511. MR 29 #1626.
- 3. J. L. Bryant and C. L. Seebeck III, Locally nice embeddings in codimension three, Quart. J. Math. Oxford Ser. (2) 21 (1970), 265-272. MR 44 #7560.
- 4. R. H. Fox and J. W. Milnor, Singularities of 2-spheres in 4-space and cobordism of knots, Osaka J. Math. 3 (1966), 257-267. MR 35 #2273.
 - 5. G. A. Venema, Approximating disks in 4-space (to appear).

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF TEXAS, AUSTIN, TEXAS 78712