THE MULTIPLICITY PROBLEM FOR 4-DIMENSIONAL SOLVMANIFOLDS

BY R. TOLIMIERI

Communicated by Daniel W. Stroock, January 6, 1977
Let N_{3} be the 3-dimensional Heisenberg group whose underlying manifold is $\mathbf{R}^{\mathbf{3}}$ and whose group multiplication is $(\xi, t)(\eta, z)=(\xi+\eta, t+z+$ $1 / 2(y u-x v)$) where $\xi=(x, y), \eta=(u, v) \in \mathbf{R}^{2}$ and $t, z \in \mathbf{R}$. Every $\sigma \in G L_{2}(R)$ defines an automorphism of N_{3} by the rule $\sigma(\xi, t)=(\sigma \xi$, det $\sigma \cdot t)$. Let Δ be the subgroup of $G L_{2}(\mathbf{R})$ which maps the integer lattice Γ of N_{3} onto itself. For $\sigma \in$ Δ set $S \sigma=N_{3} \Varangle \sigma(t), \Gamma \sigma=\Gamma \Varangle g p(\sigma)$ where $g p(\sigma)$ is the group generated by σ and $\sigma(t)$ is the 1-parameter subgroup through σ. By [2] the analysis of the right regular representation R of $S \sigma$ on $L^{2}(\Gamma \sigma \backslash \sigma \sigma)$ reduces to an analysis of the unitary operator $T \sigma: F \rightarrow F \circ \sigma$ where $F \in L^{2}\left(\Gamma \backslash N_{3}\right)$. Denote again by R the right regular representation of N_{3} on $L^{2}\left(\Gamma N_{3}\right)$. Then

$$
L^{2}\left(\Gamma W_{3}\right)=\sum \oplus H_{n}
$$

where $F \in H_{n}$ iff $R(0, z) F=e^{2 \pi i n z} F$. Each H_{n} is R-invariant, the multiplicity of R restricted to H_{n} is $|n|$ and $T \sigma H_{n}=H_{n}$. We restrict for convenience our attention to $T \sigma$ restricted to $H_{n}, n \geqslant 1$. Let L denote the left regular representation of N_{3}.

Let $\omega=\left(\begin{array}{cc}0 & 1 \\ -1 & 0\end{array}\right)$. Then $T \omega \theta_{n}=\theta_{n}$ is the space of n-degree "theta functions" in H_{n} of period i (see [1]). Set
$\psi_{1}=e^{2 \pi i z} e^{\pi i x y} \Sigma_{l \in Z} e^{-\pi(g+l)^{2}} e^{2 \pi i l x}$,
$\psi_{2}=L(1 / 2,1 / 2,0) \psi_{1}^{2}$,
$\psi_{3}=L(1 / 2,0,0) \psi_{1} L(0,1 / 2,0) \psi_{1} L(1 / 2,1 / 2,0) \psi_{1}$.
Theorem 1. The n functions $\psi_{1}^{n-j} \psi_{2}^{j / 2}, j$ even, $\psi_{1}^{n-j} \psi_{2}^{(j-3) / 2} \psi_{3}, j$ odd, j $=0,2, \ldots, n$ define an eigenbasis for θ_{n} relative to ω. The eigenvalues are the first n numbers in the infinite sequence

$$
1 ;-1, i, 1,-i, \ldots,-1, i, 1,-i .
$$

From this result, the results on the "diamond group" $S \omega$ can be read off. This case using vastly different techniques appears in [2]. Also, this is equivalent to diagonalizing explicitly the finite Fourier transform

$$
\omega^{*}=\frac{\sqrt{n}}{n}\left(e^{2 \pi i(j k / n)}\right), \quad 0 \leqslant j, k<n .
$$

Let $H_{n 0}=H_{1} \circ\left(\begin{array}{ll}n & 0 \\ 0 & 1\end{array}\right)$. Then $H_{n}=\Sigma_{j=0}^{n-1} \bigoplus L(0, j / n, 0) H_{n 0}$. Write for $\alpha=\left(\alpha_{0}, \ldots, \alpha_{n-1}\right) \in \mathbf{C}^{n},|\alpha|=1, T \alpha(g)=\Sigma_{j=0}^{n-1} \alpha_{j} L(0, j / n, 0) g, g \in H_{n 0}$. Set $V \alpha=\left\{T \alpha(g): g \in H_{n 0}\right\}$.

Theorem 2. Let $\sigma \in \Delta$. There exists an orthonormal basis σ^{*} and a unitary operator $g \longrightarrow g^{\sigma}$ of $H_{n 0}$ satisfying

$$
T \alpha(g)=T \sigma^{*} \alpha\left(g^{\sigma}\right), \quad \alpha \in \mathbf{C}^{n},|\alpha|=1, g \in H_{n 0}
$$

Up to unit multiple σ^{*} and $g \rightarrow g^{\sigma}$ are uniquely determined by requiring the following.
(a) $\omega^{*}=(\sqrt{n} / n)\left(e^{2 \pi i(j k / n)}\right), 0 \leqslant j, k<n$.
$g \rightarrow g^{\omega}$ is uniquely determined by requiring $\left(R_{X} g\right)^{\omega}=R_{\omega^{-1} x}\left(g^{\omega}\right)$.
(b) For $\tau=\left(\begin{array}{ll}1 & 2 \\ 0 & 1\end{array}\right)$,

$$
\tau^{*}=\left(\begin{array}{ll}
1 & \\
& \\
& e^{2 \pi i j^{2} / n}
\end{array}\right), \quad j=0, \ldots, n-1
$$

and $g \longrightarrow g^{\tau}=g \circ \tau$.
Theorem 3. Let $\sigma \in \Delta$ There exists
(1) a unitary operator $g \rightarrow g^{\sigma}$ of $H_{n 0}$,
(2) an orthonormal basis $\alpha_{j}, 0 \leqslant j \leqslant n-1$ of \mathbf{C}^{n},
(3) characters $\chi_{j}, 0 \leqslant j \leqslant n-1$ satisfying

$$
T \alpha_{j}(g) \circ \sigma=\chi_{j}(\sigma) T \alpha_{j}\left(g^{\sigma}\right)
$$

for all $g \in H_{n 0}$.
Clearly $H_{n}=\Sigma_{j=0}^{n-1} V \alpha_{j}$ is a decomposition into R-invariant and irreducible subspaces which are σ-invariant.

REFERENCES

1. L. Auslander and R. Tolimieri, Abelian harmonic analysis, Lecture Notes in Math., vol. \#436, Springer-Verlag, Berlin and New York, 1975.
2. J. Brezin (preprint).

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF CONNECTICUT, STORRS, CONNECTICUT 06268

