THE MULTIPLICITY PROBLEM FOR 4-DIMENSIONAL SOLVMANIFOLDS

BY R. TOLIMIERI

Communicated by Daniel W. Stroock, January 6, 1977

Let N_3 be the 3-dimensional Heisenberg group whose underlying manifold is \mathbb{R}^3 and whose group multiplication is $(\xi, t)(\eta, z) = (\xi + \eta, t + z + \frac{1}{2}(yu - xv))$ where $\xi = (x, y), \eta = (u, v) \in \mathbb{R}^2$ and $t, z \in \mathbb{R}$. Every $\sigma \in GL_2(R)$ defines an automorphism of N_3 by the rule $\sigma(\xi, t) = (\sigma \xi, \det \sigma \cdot t)$. Let Δ be the subgroup of $GL_2(\mathbb{R})$ which maps the integer lattice Γ of N_3 onto itself. For $\sigma \in \Delta$ set $S\sigma = N_3 \not \supset \sigma(t), \Gamma\sigma = \Gamma \not \supset gp(\sigma)$ where $gp(\sigma)$ is the group generated by σ and $\sigma(t)$ is the 1-parameter subgroup through σ . By [2] the analysis of the right regular representation \mathbb{R} of $S\sigma$ on $L^2(\Gamma\sigma\backslash S\sigma)$ reduces to an analysis of the unitary operator $T\sigma \colon F \longrightarrow F \circ \sigma$ where $F \in L^2(\Gamma\backslash N_3)$. Denote again by \mathbb{R} the right regular representation of N_3 on $L^2(\Gamma\backslash N_3)$. Then

$$L^2(\Gamma W_3) = \sum \bigoplus H_n$$

where $F \in H_n$ iff $R(0,z)F = e^{2\pi i n z}F$. Each H_n is R-invariant, the multiplicity of R restricted to H_n is |n| and $T\sigma H_n = H_n$. We restrict for convenience our attention to $T\sigma$ restricted to H_n , $n \ge 1$. Let L denote the left regular representation of N_3 .

Let $\omega = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}$. Then $T\omega\theta_n = \theta_n$ is the space of *n*-degree "theta functions" in H_n of period *i* (see [1]). Set

tions" in
$$H_n$$
 of period i (see [1]). Set
$$\psi_1 = e^{2\pi i z} e^{\pi i x y} \sum_{l \in \mathbb{Z}} e^{-\pi (g+l)^2} e^{2\pi i l x},$$

$$\psi_2 = L(1/2, 1/2, 0) \psi_1^2,$$

$$\psi_3 = L(1/2, 0, 0)\psi_1 L(0, 1/2, 0)\psi_1 L(1/2, 1/2, 0)\psi_1$$

THEOREM 1. The n functions $\psi_1^{n-j}\psi_2^{j/2}$, j even, $\psi_1^{n-j}\psi_2^{(j-3)/2}\psi_3$, j odd, j = 0, 2, . . . , n define an eigenbasis for θ_n relative to ω . The eigenvalues are the first n numbers in the infinite sequence

$$1; -1, i, 1, -i, \ldots, -1, i, 1, -i$$

From this result, the results on the "diamond group" $S\omega$ can be read off. This case using vastly different techniques appears in [2]. Also, this is equivalent to diagonalizing explicitly the finite Fourier transform

$$\omega^* = \frac{\sqrt{n}}{n} (e^{2\pi i (jk/n)}), \qquad 0 \leq j, \ k < n.$$

AMS (MOS) subject classifications (1970). Primary 22Exx, 43A80.

Copyright © 1977, American Mathematical Society

Let $H_{n0} = H_1 \circ \binom{n-0}{0-1}$. Then $H_n = \sum_{j=0}^{n-1} \bigoplus L(0, j/n, 0) H_{n0}$. Write for $\alpha = (\alpha_0, \dots, \alpha_{n-1}) \in \mathbb{C}^n$, $|\alpha| = 1$, $T\alpha(g) = \sum_{j=0}^{n-1} \alpha_j L(0, j/n, 0) g$, $g \in H_{n0}$. Set $V\alpha = \{ T\alpha(g) : g \in H_{n0} \}$.

THEOREM 2. Let $\sigma \in \Delta$. There exists an orthonormal basis σ^* and a unitary operator $g \longrightarrow g^{\sigma}$ of $H_{n,0}$ satisfying

$$T\alpha(g) = T\sigma^*\alpha(g^{\sigma}), \qquad \alpha \in \mathbb{C}^n, \ |\alpha| = 1, \ g \in H_{n,0}.$$

Up to unit multiple σ^* and $g \longrightarrow g^{\sigma}$ are uniquely determined by requiring the following.

(a)
$$\omega^* = (\sqrt{n}/n)(e^{2\pi i(jk/n)}), \ 0 \le j, \ k < n.$$
 $g \to g^{\omega}$ is uniquely determined by requiring $(\mathcal{R}_X g)^{\omega} = \mathcal{R}_{\omega^{-1} x}(g^{\omega}).$
(b) For $\tau = \begin{pmatrix} 0 & 2 \\ 0 & 2 \end{pmatrix}$,

$$\tau^* = \begin{pmatrix} 1 \\ \ddots \\ e^{2\pi i j^2/n} \end{pmatrix}, \qquad j = 0, \ldots, n-1$$

and $g \longrightarrow g^{\tau} = g \circ \tau$.

THEOREM 3. Let $\sigma \in \Delta$. There exists

- (1) a unitary operator $g \rightarrow g^{\sigma}$ of H_{n0} ,
- (2) an orthonormal basis α_j , $0 \le j \le n-1$ of \mathbb{C}^n ,
- (3) characters χ_i , $0 \le i \le n-1$ satisfying

$$T\alpha_{i}(g) \circ \sigma = \chi_{j}(\sigma)T\alpha_{j}(g^{\sigma})$$

for all $g \in H_{n0}$.

Clearly $H_n = \sum_{j=0}^{n-1} V\alpha_j$ is a decomposition into R-invariant and irreducible subspaces which are σ -invariant.

REFERENCES

- 1. L. Auslander and R. Tolimieri, Abelian harmonic analysis, Lecture Notes in Math., vol. #436, Springer-Verlag, Berlin and New York, 1975.
 - 2. J. Brezin (preprint).

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF CONNECTICUT, STORRS, CONNECTICUT 06268