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want to prove that one Hamiltonian circuit implies at least 3 in a trivalent 
graph? He does it by a piece of algebra. Does he want a condition for a graph 
to have a perfect matching? (See Chapter 5.) He extracts it from an identity 
involving Pfaffians. Does he want to enumerate planar maps of some kind? 
He solves functional equations for formal power series. And it is not just a 
matter of one worker's inclinations. Look at the towering structure of general 
graphical enumeration theory! It is built of permutation groups and their 
cycle indices, and its pinnacles are formal power series [6]. 

So at times I gaze into the Future and contemplate a Mathematics in which 
there is no Graph Theory. That has been absorbed into Linear Algebra [5], or 
perhaps the Theory of Formal Power Series. But this mood does not last, 
since I am naturally optimistic. My vision usually ends with a glorious 
resurrection in the form of Matroid Theory. 

I like matroids. I think of them as combinatorial objects of the same 
general kind as graphs, - generalizations of graphs in fact, - and even more 
desirable because they always have duals. It is true that I am not yet very 
good at drawing them, and if I thereby stand convicted of the feminine 
weakness of illogicality, then so be it. Matroid Theory brings with it out of 
the sea of Algebra "the abstract properties of linear dependence" and we 
discover paradoxically that fundamentally linear dependence is not an alge­
braic concept at all, even if it is at times decorated with fields and rings. 

But I am getting ahead of my subject. Matroids are not discussed in Bondy 
and Murty. Still, we can always hope for a sequel, or an expanded Second 
Edition. 

Meanwhile the present work gives us Graph Theory in its state of purity. It 
is really an outstanding book. Why, Appendix HI alone (Some Interesting 
Graphs) is worth "a thousand pounds a puff". 
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The beauty of wave motion has long fascinated mankind even though he 
may not always have been aware that he was observing waves in action. The 
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charming ripples on a pond and the fiercesome motions of the sea are plain 
for all to see but the azure sky, the glorious sunset, the twinkling star and the 
brass band are not at first recognised as wave phenomena. In fact, there are 
few areas of explanation of natural events which do not rely on waves whether 
one be concerned with molecule, jet noise, the vagaries of the weather or the 
esoterics of general relativity. That most have to wait until university before 
realising the ubiquity of undulations is an illustration that the beautiful is 
mysterious and not easily explicable. It is one thing to perceive the attraction 
of an exciting occurrence and quite another to make reliable quantitative 
predictions of the subsequent behaviour. 

Two categories of waves may be distinguished theoretically-the linear and 
the nonlinear. Probably there are no real waves which are truly linear but 
many practical situations exist in which a linear model is reasonable. 
Linearised equations have been studied extensively and are appreciably 
simpler than the nonlinear yet the simplest demands mathematics of university 
level. Only in recent years have analytical and numerical techniques been 
devised that render the nonlinear problem tractable. 

The great advantage which linearised equations enjoy is the availability of 
the principle of superposition so that the linear combination of two solutions 
is also a solution. A simple concept, yet its implementation has led to Fourier 
series and thereby to general expansions in eigenfunctions. But there are many 
situations where such expansions are not profitable so integral representations 
were adopted and the theory of integral equations evolved. Powerful methods 
of approximating integrals then become necessary: so the method of station­
ary phase and asymptotic expansions are born. The very diversity of wave 
phenomena has enriched the tree of analysis and encouraged it to spread 
branches which have-become growths in their own right. The researcher in the 
linear theory ought to have a better than passing acquaintance with the 
analytical methods and cannot afford to despise numerical techniques either. 
For many common occurrences such as the rainbow still defy a genuine 
quantitative explanation. Much remains to be done to improve weapons 
before it can be asserted that the scattering of waves (whether elastic, 
electromagnetic, water or other) by an obstacle (whose shape and properties 
are freely chosen by the investigator) can be fully elucidated. Nevertheless this 
must be one objective of the applied mathematician if he is to meet the 
requirements of the modern engineering designer. 

The writer on waves faces the formidable task of selecting some of the 
waves in the linear shop and examining them fully or of glancing briefly at all 
of them for he cannot hope to incorporate in a single display all of the 
products each of which could justify a whole shelf devoted to it. However, 
should he be disposed to present only those items which are also relevant to 
the nonlinear situation his choice will be severely limited. A perhaps natural 
progression would be to turn to nonlinear functional analysis. But, despite 
many high-powered efforts, the main achievements of nonlinear functional 
analysis have been in the demonstration of the existence of bifurcations where 
instabilities often arise. So it will be more profitable for the writer to pick on 
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the theory of rays and associated variational principles. Rays are uniquely 
valuable in the asymptotic investigation of both linear and nonlinear waves. 

It is therefore natural on opening a book on Asymptotic Wave Theory to 
enquire what aspects of rays are covered. The reader will seek in vain, for there 
is not a single mention of ray. He will find the Laplace transform, Bessel 
functions and the method of steepest descent for integrals described and then 
applied to various problems in water waves and seismology. But the nearest 
he will get to a ray is in one short section on characteristics. The absence of 
one of the most powerful modern tools for evaluating the asymptotic 
performance in many different physical contexts is a serious deficiency in a 
book purporting to deal with asymptotic theory. Whatever other methods are 
eliminated in the process of selection this one must not be discarded. The 
applied mathematician of today dare not be ignorant of rays which can offer 
a viable approach both analytically and numerically when other techniques 
are hopeless. The book at his elbow and the book he shows his students need 
to tell the reader about the propagation of energy along rays, transport 
equations and Hamilton's principle. Without these topics the value of a book 
is that much less. Caveat emptor. 
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Queueing theory is that branch of applied mathematics which attempts to 
construct and analyse models for what might be called 'unpredictable conges­
tion'. There are many practical situations in which 'customers' demand some 
sort of 'service' which they cannot immediately obtain because of the de­
mands of other customers. Very often the congestion is caused by variability, 
in the arrival pattern of the customers, or in the service mechanism, or both, 
and any model must be expressed in terms of random processes, and can be 
expected to yield conclusions in probabilistic language. 

The early development of the theory was motivated by the problems of 
congestion in telephone systems, first in Scandinavia (A. K. Erlang) and later 
in the United States and France (F. Pollaczek). At first it grew in isolation 
from other manifestations of applied probability, but gradually the connec­
tions with the growing theory of random processes came to be realised and 
exploited. In the West this process may be said to have been completed in 
1951 when D. G. Kendall addressed a famous meeting of the Royal Statistical 
Society, but in Russia the work of A. Ya. Hincin had by then already 
introduced the subject to the thriving Russian school of probabilists. 

It must be admitted that the last quarter-century has been more notable for 
quantity than for quality of published research. It is too easy to devise a 
slightly different queueing system and to study it by what are now standard 
methods. If one's results can be kept safely under cover of several Laplace 
transforms, they are safe from comparison with reality. And indeed, those 


