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It is probably unnecessary to say that a semigroup is a set with an associative 

multiplication; yet it may be useful to state in the beginning that a topological 
semigroup is a semigroup equipped with a topology making multiplication 
jointly continuous, and that a semitopological semigroup differs from it insofar 
as the multiplication may be only separately continuous in each variable. A 
reader who is somewhat familiar with topological groups but less acquainted 
with semigroups may wonder about the necessity of this distinction; it seems 
to play a small role in group theory. The reason is that, for the most commonly 
treated types of groups such as those on locally compact or Polish (completely 
metrizable 2nd countable spaces), separate continuity of multiplication implies 
the axioms of a topological group (Ellis, Effros); thus the distinction is largely 
unnecessary for groups. For semigroups, however, the only class other than 
groups showing a similar behavior is that of semilattices, i.e. commutative 
semigroups in which all elements are idempotent; J. D. Lawson recently 
showed that every compact semitopological semilattice must be topological. 
(In this general context, he proved that every subgroup of a compact 
semitopological semigroup is in fact a topological group; this fails for a 
subsemilattice.) But in general, separate continuity on semigroups does not 
imply joint continuity. Moreover, semitopological semigroups which are not 
topological arise quite naturally in great variety, notably in analysis. Indeed in 
many instances semigroups occur here as semigroups of bounded operators on 
a Banach space; only if one considers the operator norm topology will such 
semigroups be automatically topological; in the more commonly considered 
operator topologies such as the strong or weak (or, in the case of Hilbert 
spaces, ultraweak) topology they will be semitopological, but rarely topologi­
cal. It is therefore only natural that the functional analysts, notably when they 
prepare to talk on representation theory, should immediately turn to semi­
topological semigroups, as do Dunkl and Ramirez as soon as they give us the 
title of their book. 

For numerous reasons the study of topological and semitopological semi­
groups has a different flavor from the investigation of topological groups. It is 
much more recent and much less developed than the latter, despite the 
existence of considerable journal literature on the subject spread over the last 
quarter century. Even when we compare compact groups and semigroups, the 
most striking difference is the absence of invariant integration on semigroups; 
some compact semigroups have no invariant measure (on either side); and in 
fact no compact semigroup which is not a group has an invariant measure 
whose support is the whole semigroup. Consequently, ^-representations of 
semigroups are rare and not as organic as in the case of groups. Other 
phenomena compound this difficulty and make finite dimensional linear 
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representations sparse: If we look at the unit interval under the multiplication 
(x>y) •-* min{;c,j>} (a standard compact semilattice called the min-interval), 
then we recognize the impossibility of nonconstant finite dimensional repre­
sentations by the fact that every chain of projections on a finite dimensional 
space is finite, hence discrete; alternatively, the interval [5,1] under the 
multiplication (x,y) H> m&x{xy,\} (a quotient of the ordinary multiplicative 
unit interval, or standard interval, obtained by squashing [0, |] to a point) is a 
topological semigroup without any nonconstant finite dimensional linear 
representation, since every element different from the identity is nilpotent. 
This semigroup, therefore, is called the nil-thread. (We note in passing that 
locally, near the identity, the nil-thread is indistinguishable from the standard 
interval, which is one of the tamest compact semigroups in existence.) After 
such elementary examples it should be plausible why a coherent general 
structure and representation theory is unavailable even for compact topologi­
cal semigroups-in any case by comparison with what is known about compact 
groups. Yet we do have a certain body of general theory, however narrow, for 
topological semigroups (and the interested nonexpert may find some of it in 
an article on topological semigroups I wrote recently for a general audience 
[5]); but in relation to this knowledge, the field of semitopological semigroups 
(even in the compact case) appears frightfully forbidding, not only through the 
absence of almost any general theory, but also through the immense compli­
cations occurring even in the abelian case in naturally arising semigroups such 
as the structure space of a convolution measure algebra, or the ergodic theory 
of a single operator on a Banach space. When West, and then Brown and 
Moran, uncovered some of the striking features of compact semitopological 
semigroups generated by one element (such as the presence of several (indeed 
uncountably many)) idempotents, about which Dunkl and Ramirez also 
inform us in their book, this was certainly a surprise for people knowing the 
relatively simple structure of singly generated compact topological semigroups. 
In view of the awe-inspiring difficulties with semitopological semigroups it is 
certainly a reasonable tactic on the part of Dunkl and Ramirez to restrict their 
attention to commutative semigroups while they are breaking ground on the 
harmonic analysis of semitopological semigroups. 

Semigroups occur wherever one looks (as Hille remarked in the introduction 
of his pioneering book on Functional analysis and semigroups in 1948); much 
has been written about them, but comparatively little of a comprehensive, 
monograph or book type character. In a recent review in this journal [2] of the 
book by Balbes and Dwinger on distributive lattices, Mary Katherine Bennett 
takes note of a widespread scepticism towards lattice theory due to the 
ubiquity of lattices and the presence of trivial literature recognizable as such 
by the nonexpert. I fear that some of the same sentiment is in the air about 
semigroup theory, and topological semigroup theory, too. Such global criti­
cism, both here and there, is certainly not based on profound competence nor 
intimate knowledge of all the mathematics in those areas; for there are deep, 
difficult and interesting results and problems in either of these fields, and both 
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lines link up with many different branches of mathematics. It is true, research 
on both lattices and semigroups is primarily theory-oriented while the trend of 
the time begins to favor problem-oriented endeavors again; but neither 
excludes the other, and I find speculation on their relative merit idle. However, 
external pressures on the profession in a period of mathematical recession in 
the seventies have caused the number of dissertations written in topological or 
analytical semigroup theory to become retrograde by comparison with their 
boom in the fifties and sixties. Under such circumstances it has to be noted 
gratefully that Dunkl and Ramirez, armed with a bunch of pretty good new 
ideas, join an uphill fight, and win a battle with their monograph. They 
demonstrate that commutative harmonic analysis is alive on semigroups and 
full of possibilities and challenging problems-if such proof were really 
necessary after Taylor's herculean work on convolution measure algebras; and 
indeed Taylor's influence on the monograph under review is evident. 

Before we have a closer look at Dunkl's and Ramirez' book we pause for a 
moment to glance at the existing monograph literature (a more detailed 
tabulation and evaluation is presented in [5]). The block of monographs 
concerned with topological semigroups and their structure comprises the 
introductory treatise to topological semigroups by Paalman de Miranda, 1964 
[10]; the tour de force treatment of the theory up to the middle sixties by 
Hofmann and Mostert, 1966 [8]; a discussion of duality and finite dimensional 
representation of compact topological semigroups of Hofmann, 1970 [6]; a 
systematic evaluation of character duality of compact semilattices and its 
applications by Hofmann, Mislove and Stralka, 1974 [7]; and there will be a 
new book by Carruth, Hildebrant and Koch, 1977 (?) [4] which promises to 
become the new handbook on topological semigroups. Except for the 1970 
duality treatise, there is little if any emphasis on harmonic analysis in all this 
literature. By contrast, we have a second block of monographs now being 
enlarged by the present one, which is concerned with analysis and with 
semitopological semigroups: A survey and treatise on weakly almost periodic 
functions and the associated compactifications by Berglund and Hofmann, 
1967 [1], a hardcover book with similar intent by Burkel, 1970 [3]; and one 
may count Taylor's monograph on measure algebras, 1972 [12] in this 
collection because semitopological compact semigroups play an important role 
in it. As complementary reading in this line one should recommend William­
son's then comprehensive survey on harmonic analysis on semigroups, 1967 
[13] and the article by Rothman and Schuh on Laplace transforms on 
vanishing algebras, 1974 [11]. The reader desirous to see this literature placed 
in a more historical frame may wish to consult [5]. Dunkl and Ramirez make 
every effort to make their monograph self-contained by presenting the 
required background material in introductory sections and appendices; only 
the reader who wishes to study the proofs of the prerequisites will have to 
consult some of the above source material and other references on harmonic 
analysis or operator theory such as Rudin's and Sakai's books. 

What are Dunkl and Ramirez up to, what is novel in their approach? In a 
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nutshell, harmonic analysis is concerned with certain classes of representa­
tions; one associates with a representation its "coefficient functions" and all 
functions arising in this fashion are called representative functions. Let us 
recall for one moment how this works for compact groups and the class of 
finite dimensional linear representations: Suppose S is a compact group and 
5 H ^ : 5 H B(E) a continuous linear representation on a finite dimensional 
complex vector space E. Let R(S) be the set of all functions m ( ^ « , i ; ) with 
u E E and v E E*, the dual of E. This is the same thing as taking all 
functions s \-> <7J,<o>, with co E B(E) (= B(E\), where the lower star 
denotes the predual of a dual space. Since we can form direct sums and tensor 
products of finite dimensional representations without leaving the class, R(S ) 
is an algebra, and since we can pass to the adjoint representation, it is even 
conjugate closed; according to the famous theorem of Peter and Weyl it is sup 
norm dense in C(S ). The theory of finite dimensional representations and the 
concomitant theory of R(S ) has been extended to compact semigroups where 
things become more complicated due to the fact that R(S) may fail to be 
conjugate closed (since averaging, hence unitarisation, is no longer available); 
what is worse: We earlier saw some simple examples for which there are no 
nonconstant finite dimensional representations, whence R(S) contains only 
the constant functions. This theory is accessible in [6], but much remains to be 
done. 

For a commutative semitopological semigroup S, Dunkl and Ramirez begin 
by first choosing a new class of representations: They consider all ultraweakly 
continuous semigroup morphisms s h-> Ts: S -* Ax into the unit ball of some 
commutative W*-algebra A ; since A is the dual of some Banach space A%, the 
unit ball is weak-star compact, and the weak-star topology o(A,A%) is the 
ultraweak topology. The associated set R(S) of representative functions 
contains precisely the functions s i-> <7J,co>, where co E A% is an element of 
the predual of the range algebra of A of some representations T E §>. In fact, 
the authors proceed equivalently, but a bit more concretely and consider 
probability measure spaces (jtx, fl) and representations of S into the unit ball of 
L00 (JU, R); the representative functions are then given by s H> ƒ TJ d\i, 
ƒ E L](ft, Q). By observing the direct sum and the tensor product of commu­
tative W* algebras or, alternatively (as the authors do), simple measure space 
constructions, one notes that R(S) is an involutive subalgebra of C(S) (the 
algebra of bounded continuous functions on S). In fact, R(S ) is shown to be 
a subalgebra of the C*-subalgebra WAP(S) of C(S) of all weakly almost 
periodic functions. The question of possible norms on R(S ) is a more delicate 
matter. The authors show in fact that the only case that R(S) is closed in C(S) 
in the sup-norm topology is that of finite dimension of R(S). In particular 
(except for the case of finite dimensions), we have R(S) # WAP(S). But a 
suitable norm can be found and for this norm, R(S ) is an involutive Banach 
algebra. 

For each commutative semitopological semigroup S there is a commutative 
W*-algebra, which I will call W*(S) and a representation p: S -» W*(S\ 
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such that for any ultraweakly continuous semigroup morphism T: S —» Ax 

into the unit ball of a W* -algebra there is a unique W* -morphism (ultraweak­
ly continuous *-morphism) T'\ W*{S) —> A such that T'p = T. (In functorial 
parlance this says that the functor A H> AX (with the ultraweak topology on the 
unit ball A{) from the category of W^-algebras into the category of commuta­
tive semitopological semigroups has a left adjoint W*{)) The kernel congru­
ence of p identifies precisely those pairs s, t E S which cannot be separated 
by any representation T, and these are indeed precisely those pairs which are 
not separated by any representative function from R(S ). (Recall the example 
of the nil-thread in which every element other than the identity was nilpotent; 
clearly R(S) and W*(S) are one dimensional in this case, and p is constant!) 
If we denote with %(S) the predual of W*(S\ and with p* : W*(S) -» R(S) 
the function defined by p*(co)(s) = <p(,s),co), then p* is a quotient map of 
Banach spaces whose kernel is the annihilator in W^ (S ) of p(S ) and hence of 
the closed linear span of p(S ) in W* (S ), which therefore is precisely the dual 
R(S) of R(S). Thus R(S) is a function algebra as a closed subalgebra of 
W*(S\ which generates W*(S) as a W* -algebra (since p(S) already does), 
and the corestriction p: S -> R(S) is given by <ƒ, p(s)} = f(s). In particular, 
if p(S), hence R(S)*, is conjugate closed, then R(sf = W*(S) and /?(5) 

= %(S). 
When we now search for classes of commutative semitopological semi­

groups for which R(S) = W*(S) we discover a class which plays an 
important role in the theory; Dunkl and Ramirez call it class 9l; in order to 
describe which objects they collect in this class we observe that in any 
commutative semigroup the set E(S) of idempotents is a semilattice (certainly 
nonempty if S is compact) and H(S), the set of all s for which there is an s' 
with ss' E E (S), is a subsemigroup which is a union of groups; in the abelian 
situation these are precisely the so called inverse semigroups, and some people 
follow Mostert and myself in calling them Clifford semigroups, since A. H. 
Clifford was the first to provide a systematic treatment for them (1941). In a 
topological compact semigroup, E(S) is closed, hence a compact semilattice, 
and H(S) is closed, forming a compact topological Clifford semigroup, and in 
any such every maximal subgroup <is compact. None of this persists in the 
semitopological case. Dunkl and Ramirez say that a semitopological abelian 
semigroup S belongs to class % iff S = H (S )~ ; even in the compact case this 
is still a remarkably large class contrary to what the topological case may lead 
one to believe. For example, the W^P-compactification of any abelian 
topological group is of this form. But, even more interestingly, if {\i, ÏÏ) is a 
measure space with a continuous probability measure, then the unit ball 
S = L^dx, fi)t is of class %, This yields an example of an S on which x \-> x2 

is not continuous and E(S) is not closed: the constant function with value \ 
can be approximated by a net of characteristic functions. It is perhaps useful 
to note that this does not say that E(S) fails to be a topological semilattice in 
the induced topology: in fact, it is. Every unit ball of a W*-algebra embeds 
into another one which is a ^semigroup, and this applies particularly to 
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W*(S). Thus an S embeds into a unit ball of a f^*-algebra which is a 9l-
semigroup iff R(S) separates the points, %-semigroups are pretty closely 
looked at in the monograph. They are among those for which R(S) 
= W*(S\ R(S) = W*(S). US e% then \\f\\R{s) = \\f\\R{H(s)); a commu­
tative inverse semigroup S = H (S) has an involution x \-+ x' (with the unique 
inverse x' of x such that xx' G E(S)). This allows the introduction of positive 
definite functions on S: indeed ƒ G C(S) will be positive definite iff for every 
finite sequence xx, . . . , xn G S the matrix (f(xiXj))ij=l n is the coefficient 
matrix of a positive semidefinite sesquilinear form on Cn. But even if S is only 
of type % this definition is possible if we restrict the choice of the xi to H(S). 
Dunkl and Ramirez then show as a core result a theorem relating to a group 
classic by Gelfand and Raikov: Let S be a commutative ^semigroup with 
identity. Then ƒ G C(S) is positive definite iff there is a /^-representation 
T: S -> L 0 0 ^ , ^ and some g <E Ll(ii,Çl) with g > 0 such that f(s) 
= f Tsgdfi for all s G S. The key, as usual, is the concept that positive definite 
functions go together with Hubert space representations. 

In all of this, one naturally asks the question on the scope of the theory of 
representations into the unit ball of W*-algebras and the corresponding 
theory of R(S). Firstly, one wishes to see some examples; secondly one would 
like to know whether one has general criteria to ascertain that R(S ) separates 
the points. If S is a locally compact abelian group, then R(S ) identifies with 
M(G f. If S is a subsemigroup of a locally compact abelian group G and S 
has uniformly positive Haar measure (i.e. ffhdmg = 0 for all h G l}(G) 
H M(S) and ƒ G C{S) iff/ = 0), then R(S) = R(G)\S. For the theory of 
l}(S) for a subsemigroup of an l.c.a. group we may refer the reader to the 
article by Rothman and Schuh for further information [17]. These are the 
examples we have in the vicinity of groups. Otherwise, the authors compute 
R(S) for the min-interval S and find that ƒ G C(S) is in R(S) iff it has 
bounded variation; this connects our abstract setting with much concrete 
classical analysis. Another semilattice S for which R(S) is calculated is 
S = {1} U I U {0} where X U {0} is the one point compactification of a 
discrete infinite set X with multiplication x2 = x and all other products 0 and 
where 1 is an isolated identity. Then R(S) = ll(S) and \\f\\R{s) = |/(0)| 
+ ^iXEX \f(x) ~ f (0)1 Personally, I think that compact semilattices are an 
excellent test class to test the i^(S,)-theory; in general the authors do not tell 
us even for this comparatively narrow class whether or not R(S ) separates the 
points, let alone on the compact semitopological semigroups of type %; it 
would be distinctly desirable to have an answer to these questions. It is rather 
clear that R(S) separates the points of a compact Lawson semilattice (i.e. one 
on which the morphisms into the min-interval separate the points). If for 
compact semilattices in general this were also true, then the R(SJ-theory 
would afford a promising tool to attack the rather impermeable class of 
compact topological semilattices on which the morphisms into the min-
interval do not separate the points; so far no tool whatsoever is known to 
attack these. What is certain is that semigroups with nilpotent elements cannot 
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be treated with the i?(5)-theory. Therefore, Dunkl and Ramirez seek and find 
a way to expand their theory of L°°-representations. Recall that we first 
considered representations of S into the unit ball of commutative W*-
algebras, thus, in particular, of dual function algebras. 

The authors enlarge the class of range algebras by considering dual Q-
algebras, where a g-algebra is simply the quotient algebra of some function 
algebra modulo a suitable clased ideal. Thus, a Q-representation is a weak-star 
continuous morphism T: S -> Ax where A is a g-algebra. The associated set 
of representative functions is called RQ(S); a function ƒ G C(S) belongs to 
RQ(S) iff there is a (^-representation T: S -> Ax and some co e A% such that 
ƒ(s) = <7J,co> for all s G S. Again it is shown that RQ(S) is an involutive 
Banach algebra with a suitable norm whose dual RQ(S) is a dual g-algebra, 
and there is a universal (^-representation p: S -> RQ(S\ given by p(s)(f ) 
= ƒ(s). The authors get much mileage out of the free g-algebra generated by 
a set X which is explicitly constructed. 

In what respects does the RQ(S )-theory improve the R(S )-theory? On the 
class % which we considered before, the two theories essentially agree, since 
R(S) = RQ(S) for S G % with 1 G S. On the other hand Dunkl and 
Ramirez demonstrate the greater generality of the g-theory by calculating that 
RQ(S) separates the points on any Rees quotient S of (Z+) and (R+ )"; this 
takes care of the elusive nil-thread. It is remarkable that RQ{S) measures the 
representability of S on Hilbert spaces. The authors study representations 
</>: S —> B(H\ of S into the unit ball of the space of bounded operators on a 
Hilbert space equipped with the weak operator topology. If L^: C{S) 
-* B(H ) is the linear map induced by <f> and a is as above, then </> is called g-
bounded iff L. o a is a linear contraction. They show that there exists for 
every commutative semitopological semigroup with 1 a g-bounded represen­
tation <j> such that the map <^ : B{H\ -> C(S) given by <#>*(co)(s) = <<|>(Vh w) 
satisfies i m ^ = RQ(S). Moreover, B{H\/kev§^ and RQ(S) are isometric 
via <ƒ>*. 

What we have indicated in this review, of course, cannot even circumscribe 
the scope of the monograph, let alone touch upon all subject matters treated 
or do justice to the respectable amount of technical work done, technical in 
the sense of traditional harmonic analysis. Considerable effort is made to 
discuss the harmonic analysis of discrete abelian semigroups which is one of 
the very early topics in the harmonic analysis of semigroups, initiated by 
Hewitt and Zuckerman in 1956. Not only is this a good testing ground, 
because one has a pretty firm grip on the situation, but one is highly motivated 
by the simple trick of discretification of a semitopological commutative 
semigroup, which surprising as this may sound, pays off in the topological 
theory by sometimes reducing a question to the discrete case. A wealth of 
material on Hilbert space representations and dilations covers a whole 
chapter. 

The authors have to be credited with making every effort to make this book 
readable. Their reference and numerology system is excellent, since they give 
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chapter and section coordinates at the top of each page. The style of the book 
is clear and all details are given. All in all, the monograph is an important 
addition to the literature on topological semigroups and their harmonic 
analysis; in due time we will be in a better position to judge which parts of 
this material will most affect and stimulate further research. 
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Pursuit games, by Otomar Hajek, Mathematics in Science and Engineering, 
vol. 120, Academic Press, New York, 1975, xii + 266 pp., $10.50. 

From the beginnings of the differential calculus, through the calculus of 
variations to modern control theory, dynamical and optimization problems 
have always provided a stimulus for mathematical activity. A two person 
differential game is a generalization of a control system, and can be consid­
ered as a control system with two competing controllers or players. (The 
theory of differential games with more than two controllers is in an even 
more elementary state, basic problems being the possibilities of coalitions, 
how to model information flow, and all the other problems of von Neumann's 
discrete game theory, now in a dynamic setting.) Conversely, control theory 
can be considered as a special case of a differential game with just one player. 

Pioneering work on differential games was undertaken by Rufus Isaacs in 
the 1950's, though his.work was not generally available until his book 
Differential games (J. Wiley and Sons, New York, London), was published in 


