
200 BOOK REVIEWS 

are in order. The book is not primarily intended to treat the applications of 
differentiation theory to real and complex analysis. Rather, for the most part, 
the author tries to achieve great depth in treating the "pure" differentiation 
theory itself. He therefore provides a background for the material discussed 
here rather than this material proper. De Guzman's book contains the basic 
Lebesgue theorem on differentiation of the integral and the Hardy-Littlewood 
maximal theorem along with a great many variants of these theorems, proven 
by the use of covering lemmas. The variants of the Vitali lemma which the 
author treats are also quite numerous. It is extremely commendable that the 
Calderón-Zygmund decomposition is proven, and the disk multiplier problem 
is mentioned, with a few words about C. Fefferman's solution to the problem. 
In addition, De Guzman includes a careful treatment of differentiation theory 
with respect to two other extremely crucial differentiation bases besides the 
class of balls (or what is essentially the same thing, cubes). These are the bases 
of all rectangles in Rn with sides parallel to the coordinate axes, and the larger 
class of all rectangles in Rn with arbitrary orientation. The relationship 
between covering lemmas, maximal theorems, and differentiation theorems is 
also discussed. These important topics, as well as many others make the book's 
content worthwhile for the experts of this subject or for students who would 
like to learn these areas, and then branch out by studying the important 
applications. 

De Guzman's book is carefully written, and the style makes for easy and 
enjoyable reading. His work is a significant contribution to the field which 
should be welcomed by all concerned with this beautiful area of mathematics. 
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Invariants for real-generated uniform topological and algebraic categories, by 
Kevin A. Broughan, Lecture Notes in Mathematics, No. 491, Springer-
Verlag, Berlin, Heidelberg, New York, 1975, x + 197 pp., $8.20. 

The literature on relations between the dimension of a metrizable space X 
and the existence of metrics on X having convenient special properties is 
rather extensive (see Nagata's book [5] for the only good exposition) and 
contains two really successful theorems. First, Hausdorff formalized the idea 
of estimating the measure of a set A in r-dimensional space by covering it with 
finitely many enspheres and taking their measures to be e|. It turns out (L. 
Pontrjagin and L. Schnirelmann, 1932; E. Szpilrajn, 1937; book [5, pp. 
112-116]) that the dimension of separable metrizable A is the infimum of the 
real numbers / such that for some metric on A, the /-dimensional measure is 
0. The second theorem is P. Ostrand's [6] (improving results of J. de Groot, 
1957, and J. I. Nagata, 1958; book [5, pp. 137-154]): metrizable X has covering 
dimension < n if and only if it has a metric in which, for all c, given 
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n + 2 points yi in the e-neighborhood of a point x, some two ƒ s are within e 
of each other. 

In Ostrand's theorem one must specify covering dimension, dim X, because 
it is in general greater than small inductive dimension ind X, In separable 
spaces they coincide, and the /-dimensional measure idea depends on (at most) 
countable sums and cannot be used for nonseparable spaces. By definition 
dim X < n when every finite open cover has a refinement no n + 2 of whose 
members have a common point; ind X < n + 1 when each point has a basis 
of neighborhoods with at most «-dimensional boundaries (respectively, ind 
X = 0 • • •, with empty boundaries). There are natural modifications of both 
dim and ind: large covering dimension, given by arbitrary open coverings, and 
large inductive dimension, given by neighborhoods of closed sets instead of 
points. But in this setting, metrizable topological spaces, both these notions 
coincide with dim. 

Among several similar special results on zero-dimensional metric spaces, the 
most interesting is Broughan's [1]: metrizable X admits a metric d whose set 
of values is contained in the union of {0} and the set of unit fractions l/n, if 
and only if dim X = 0. (It should be noted that the proof is hard, but the hard 
part is earlier work of K. Morita [4].) More generally, if X has a metric d whose 
set of values d(X2) C [0, oo) is not a neighborhood of 0, plainly 

ind X = 0. 

So in the separable case the result is that X has a metric with d(X2) zero-dimen­
sional if and only if X is zero-dimensional. 

The first problem is whether every metric space d for which d(X2) is not a 
neighborhood of zero satisfies dim X = 0. In other words, classifying subsets 
S of [0, oo) by equality of the classes M(S) of all metrizable topological spaces 
admitting an S-valued metric, is there only one nontrivial class? Broughan 
shows that all S in which 0 is a nonisolated point, but whose closure is not a 
neighborhood of 0, are equivalent. The next question would seem to be, if X 
has (say) a rational-valued metric, is every closed set the intersection of a 
simple sequence of clopen sets? 

The second problem concerns the classification of these sets S by the classes 
U(S) of S-metrizable uniform spaces. Here there is certainly more than one 
nontrivial class, and the problem is, are there more than two? One class is 
given by precisely those S just mentioned, containing 0 as a nonisolated point 
but not dense in any neighborhood of 0; and it is the class of zero-dimensional 
metrizable uniform spaces. (While uniform dimension theory seems generally 
more confused than topological, it is the opposite for zero-dimensional metric 
spaces: all the usual uniform dimension functions coincide [3]. This greater 
simplicity may prevail more generally; the uniform theory is short of both 
theorems and counterexamples.) If S is dense in a neighborhood of zero, the 
space Q of rationals is (uniformly) S-metrizable, though its uniform dimension 
is 1. However, one can see by examining the completion that the uniform 
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space of irrationals has no countable-valued metric. Characterizing the class 
of <2+-metrizable uniform spaces is a tricky problem: an aspect, certainly, of 
the main problem. 

Broughan's book includes a formal characterization of the <2+-metrizable 
uniform spaces, but it is just the existence of an indexed family of entourages 
of the same order type as Q and so structured as to give the metric at once. 

The third possibly very interesting problem concerns metrics on general 
spaces which are rational-valued on a dense subspace. Broughan conjectures 
that every metrizable topological space has such a metric. Of course this is true 
for separable spaces, and this might be followed up to nice-valued metrics on 
«-dimensional separable spaces. Broughan proves that every metric space has 
a dense subspace D with dim D = 0. This is quite easy; the author uses a 
sophisticated 1967 theorem of N. Kimura needlessly, for the original theorem 
of Cech [2] applies, and in a special case much easier to prove than the general 
case. Consequently it is not beyond human capacity to study the construction 
further and perhaps get a rational-valued metric on D which would extend 
over the whole space. 

In the weird variety of topics taken up in this book (under an awkward 
notation and terminology, systematically invoking categories which really 
serve only as collections of objects-category of metrizable spaces, category of 
semimetric spaces, etc.), two other passages are of interest. Paralleling the 
notions of strong paracompactness, pointwise paracompactness, and others, 
the author defines clopen-paracompactness: every clopen cover has a clopen 
locally finite refinement. (He says "star-finite", but it is obviously equivalent.) 
There are several quite easy results, one pretty one: X is clopen-paracompact 
if and only if to every clopen cover of X there is subordinated a harmonic 
partition of unity (i.e. a partition into continuous functions whose values are 
0 and unit fractions). And one result motivates the concept: a paracompact 
space X9 has large inductive dimension (= dim, in the metrizable case) zero if 
and only if it is clopen-paracompact and ind X = 0. 

More useful, probably, is Broughan's study of six or eight types of special 
metric or norm on topological groups, fields, commutative rings, and vector 
spaces over classical disconnected fields. The usual conclusion is that among 
the S-metrizability properties, <2+-metrizability is next strongest after harmon­
ic metrizability. 

At least two unsolved problems posed in this book can be solved at once by 
anyone conversant with (respectively) Kelley's or Sierpinski's introductory 
topology text. Conjecture 5.25 is that every metrizable space admits a 
compatible complete uniformity, which is true. Conjecture 5.23 is refuted by 
the observation that every complete dense-in-itself separable metric space X 
has a dense subset homeomorphic with the space P of irrationals. To prove it, 
take a homeomorphism between countable dense subsets of X and of P (this 
book shows how) and apply Lavrentiev's theorem: a partial homeomorphism 
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between complete metric spaces extends to a homeomorphism of two G8 

subsets. 
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Dimension theory of general spaces, by A. R. Pears, Cambridge University 
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Interest in making the concept of dimension mathematically rigorous 
probably began in 1890 with the appearance of an example due to Peano of a 
continuous map of the unit interval onto a triangle and its interior. This 
created the uneasy possibility that perhaps two Euclidean spaces of different 
dimensions might be homeomorphic. It is hard to imagine what mathematics 
might have been if this had turned out to be the case. It was a close call! 
Fortunately, L. E. J. Brouwer gave a proof in 1911 that if Rn and Rm are 
homeomorphic, then n = m. However, it was not until the 1920's that a 
topological theory of dimension began to be developed. The work of K. 
Menger and P. Urysohn as well as others brought into existence an elegant 
theory of dimension applicable to all separable metric spaces. It was only 
incidental to this theory that Euclidean «-space was «-dimensional. In true 
mathematical tradition, if the unthinkable had happened, dimension theory 
would have continued with the same fervor. The force of mathematical inquiry 
would have developed a mathematical structure similar to what we have 
today, except for the unfortunate footnote that Euclidean «-space is not n-
dimensional! Mathematics would have suffered, but not dimension theory. 

In 1928 the first text in dimension theory appeared, Dimensionstheorie by K. 
Menger. This book has historical value. It reveals at one and the same time 
the naïveté of the early investigators by modern standards and yet their 
remarkable perception of what the important results were and the future 
direction of the theory. Copies are difficult to obtain now, but it is worth the 
effort. 


