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(1 - x) and (1 - y) are replaced by (1 - xf and (1 - y)a (a ¥* 1): the limit 
of the generalized information function when a tends to 1 is the Shannon's 
information function. 

In Chapter VII further generalizations of Rényi's entropy are introduced 
containing two parameters a, /?: if /? = 1 they reduce to Rényi's entropy. 

The book of J. Aczél and Z. Daróczy represents the summing-up of a long 
series of fruitful researches: one has the impression that they have so 
thoroughly explored the field, that there is little chance for the discovery of 
really new properties of Shannon's entropy and eventually Rényi's entropy; 
perhaps this outstanding achievement, discouraging further efforts on the 
same line, will now stimulate explorations of neighbouring fields, taking 
account of all the aspects of information out of the scope of the classical 
theory. 
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Differentiation of integrals in Rn, by Miguel de Guzman, Lecture Notes in 
Mathematics, no. 481, Springer-Verlag, Berlin, Heidelberg, New York, 
1975, xi + 225 pp., $9.50. 
Professor de Guzman's book concerns itself with material which has come, 

in recent years, to play a fundamental role in the theories of real and complex 
analysis, Fourier analysis, and partial differential equations. Maximal func
tions, covering lemmas and differentiation of integrals seem to be at the core 
of the modern theory of singular integrals, Littlewood-Paley theory, and Hp 

spaces, as well as many other areas of great interest. 
The starting point of the theory is the consideration of the following simple 

result: 
Given ƒ G Ll(Rn), we have 

1 C 
lim 7^7 rr j , x f(y) dy = ƒ (x) 
r->0 \B(x; r)\ JB(x;r)J V ^ W J V 7 

for a.e. x E Rn. (Here B(x; r) is the ball centered at x of radius r, and | B(x; r)\ 
is its Lebesgue measure.) This result, known as Lebesgue's theorem on the 
differentiation of the integral, is, however, just the beginning of the theory. 
For, in order to give their proof of this result, Hardy and Littlewood 
introduced the maximal operator, M, given by 

M(f)(x) = sup T - ^ - V T ƒ \f(y)\dy, ƒ G L?(Rn\ 1 < p < oo. 
r>0 \Byx\r)\JB{x\r) 

This maximal operator, which is of fundamental importance in many areas, 
turns out to be bounded on Lp(Rn) when/? > 1, and majorizes some of the 
most important operators in Fourier analysis. For example, the process of 
taking Cesàro means of Fourier series or Poisson integrals of functions can be 
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understood via the Hardy-Littlewood maximal operator. This operator, M, in 
turn is best understood in terms of a certain covering lemma. Roughly 
speaking, the covering lemma says that if a set E C Rn is covered by a union 
of overlapping balls, then a disjoint subcollection of these balls may be chosen 
in such a way that the disjoint subcollection has total measure at least equal 
to a fixed fraction of the measure of E. The idea of a covering lemma is a 
crucial one, and there are a huge number of variants of the lemma above in 
the literature. 

Thus, the introduction of the basic problem of differentiation of the integral 
by Lebesgue and the subsequent realization that a solution of the problem 
could be found which had a profound relationship with other important 
problems of analysis provided the foundation upon which much of the later 
theory of real and complex analysis is built. 

A particularly striking example of this enormous impact of maximal 
functions on problems in Fourier analysis and partial differential equations is 
the theory of singular integral operators. A. P. Calderón and A. Zygmund, in 
their fundamental study of singular integral operators made use of a certain 
decomposition of a function into large and small parts, and this decomposition 
was closely related to the maximal function in a beautifully subtle way. In fact, 
Calderón and Zygmund obtained a new proof of the appropriate L1 inequality 
for the maximal operator using their decomposition. In the following decades, 
the Calderón-Zygmund methods were ingeniously applied to solve a great 
number of problems in analysis, many relating directly back to the source-
differentiation theory. A good example of this is E. M. Stein's characterization 
of the functions ƒ on the unit cube Q in Rn for which M(f) E l}(Q). Stein 
showed that M(f) G Ll(Q) if and only if fQ | / | ( log+ | / | + \)dx < oo. 

Another example is the important work of F. John and L. Nirenberg which 
introduced the class BMO of functions of bounded mean oscillation, which 
plays a crucial role in the C. Fefferman-Stein theory of Hp spaces. Finally, we 
would like to mention our last example here of the application of the 
Calderón-Zygmund decomposition to areas of Fourier analysis. This is the 
idea of the Burkholder-Gundy inequalities: Suppose that we know that a 
linear operator S is bounded on If(Rn) and we have another operator T on 
Lp(Rn) which we wish to prove is bounded. If we can show that for small 
enough y > 0 and all a > 0 we have 

m{\T(f)\ > 2a, \S(f)\ < ya] < Cym{\T(f )| > a), 

then it will follow easily that T is also bounded on Lp(Rn). Burkholder and 
Gundy were able to show that such an inequality is valid when T is the Hilbert 
transform and S is the Hardy-Littlewood maximal function. The proof of this 
inequality makes use of the Calderón-Zygmund decomposition and it is a 
vivid demonstration of the fact that the Hilbert transform is controlled by the 
maximal operator. Such inequalities have been used to establish weight norm 
inequalities and in order to interpolate between the spaces Hx and If, this 
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interpolation being a basic idea in the C. Fefferman-Stein theory of Hp spaces. 
So it is to say the very least that the theory of singular integrals, which has 
such deep roots in differentiation theory, has had an impressive variety of 
applications. 

Somewhat later than the results of Calderón and Zygmund on the bounded-
ness of singular integral operators a major contribution to Fourier analysis 
was given by E. M. Stein in his famous work on limits of sequences of 
operators. As mentioned above, it had been known to analysts for a long time 
that in order to establish the existence of pointwise limits of a sequence of 
operators (such as the averages of functions over balls with a fixed center, the 
Hilbert transform, and the partial sums of a Fourier series) it was enough to 
prove a maximal inequality. That is, if one wanted to establish that for 
ƒ E l} (0, lit) and a sequence Tn of bounded linear operators on L1 (0, 2TT), 

lim TJf)(0) exists for a.e. 0 E (0,2TT), 
n-*oo 

then one ought to try to prove that 

m{T*(f)>a}<^\\f\\v 

where 
7* (f)(8) = sup|r„(/)(0)| 

«>1 

is the maximal operator. Stein proved the amazing result that for a very large 
class of operators, if the limits in question exist a.e., then the maximal 
inequality above must hold. This theorem has had a great number of important 
consequences, one of which should be mentioned now. This result is that a 
differentiation theorem is equivalent to a maximal theorem. To illustrate, 
consider the question of whether the collection, % of all rectangles in R2 with 
sides parallel to the coordinate axes differentiates the integrals of functions in 
Ll(R2). That is, is it true that 

M mfRf(y)dy==f{x) fora-e-*G*2 

xGR4i*m(R)-*0 

whenever ƒ E i) (R2) ? It follows at once from Stein's theorem that the answer 
to the preceding question is "no" because the simplest examples show that the 
maximal operator 

M a (ƒ) (*)= sup ±f \f(y)\dy 
xeR;RE<& \K\ JR 

does not satisfy an inequality of the form 

m{Ma(/) > « } < § ||ƒ||,. 

In fact, when his result first appeared, Stein applied it to eliminate many 
difficult open problems in Fourier analysis. Since then, other applications have 
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appeared, and one of the more recent is discussed below. It should be pointed 
out that, despite the emphasis here on applications, the result is, in itself, one 
of the most basic principles of real and complex analysis. 

Connected with the theorem of Stein is another idea related to the theory of 
differentiation due to Charles Fefferman. This is his beautiful solution to the 
so-called "disk conjecture", where he provided a negative answer to the 
following question: Is the operator TD defined by TD{f)* (£) = XD(£) * ƒ(€) 
bounded on If(R2) for any/? # 2 ? (Here XD *S t"ie characteristic function of 
the unit disk in the plane and ƒ is the Fourier transform of ƒ.) C. Fefferman 
was able to show the fallacy of the conjecture by using the solution to the 
Kakeya needle problem, which is itself intimately connected to the differentia
bility of integrals. Finally, if we combine these striking results of C. Fefferman 
(on TD) and E. M. Stein (on limits of sequences of operators) it is not difficult 
to see that for/? < 2 there exists a function ƒ {0X,92) £ LP(T2) with double 
Fourier series 

m,n = —co 

so that 

lim 2 amne
i(m0^n0^ 

fails to exist on a set of positive Lebesgue measure on the torus. Put in plain 
terms, on lJ(T2),p < 2 the disk partial sums of the Fourier series need not 
converge a.e. This remarkable result stands in sharp contrast to the famous 
one-dimensional result of Carleson-Hunt which says that the Fourier series of 
a function in i/(0,27r) converges a.e. as soon as/? > 1. 

The results above represent some great highlights in the history of analysis 
in the present century. Though at first glance many of them would seem to 
have nothing at all to do with the theory of differentiation, it has turned out 
that each of these problems and their solutions have had roots reaching deep 
into this theory. Furthermore the results here hardly begin to exhaust the list 
of important theorems of analysis relating to differentiation of integrals. And 
we do not wish to leave the impression that the interplay between analysis and 
differentiation is now completely understood, and will be of no use in the 
mathematics of tomorrow. On the contrary, the field is now blossoming faster 
and becoming more important than ever. Two good examples of this develop
ment are the recent work of A. Cordoba, which connects the study of the 
maximal operator with respect to general differentiation bases with the 
covering properties of these bases, and the recent results of E. M. Stein, A. 
Nagel, N. Rivière, and S. Wainger dealing with maximal operators and 
singular integrals along lower dimensional varieties in Rn. Because of these 
developments as well as others it seems assured that differentiation theory will 
take its place in the future study of analysis. 

At this point, some more specific remarks on the nature of the author's book 
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are in order. The book is not primarily intended to treat the applications of 
differentiation theory to real and complex analysis. Rather, for the most part, 
the author tries to achieve great depth in treating the "pure" differentiation 
theory itself. He therefore provides a background for the material discussed 
here rather than this material proper. De Guzman's book contains the basic 
Lebesgue theorem on differentiation of the integral and the Hardy-Littlewood 
maximal theorem along with a great many variants of these theorems, proven 
by the use of covering lemmas. The variants of the Vitali lemma which the 
author treats are also quite numerous. It is extremely commendable that the 
Calderón-Zygmund decomposition is proven, and the disk multiplier problem 
is mentioned, with a few words about C. Fefferman's solution to the problem. 
In addition, De Guzman includes a careful treatment of differentiation theory 
with respect to two other extremely crucial differentiation bases besides the 
class of balls (or what is essentially the same thing, cubes). These are the bases 
of all rectangles in Rn with sides parallel to the coordinate axes, and the larger 
class of all rectangles in Rn with arbitrary orientation. The relationship 
between covering lemmas, maximal theorems, and differentiation theorems is 
also discussed. These important topics, as well as many others make the book's 
content worthwhile for the experts of this subject or for students who would 
like to learn these areas, and then branch out by studying the important 
applications. 

De Guzman's book is carefully written, and the style makes for easy and 
enjoyable reading. His work is a significant contribution to the field which 
should be welcomed by all concerned with this beautiful area of mathematics. 

ROBERT FEFFERMAN 
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Invariants for real-generated uniform topological and algebraic categories, by 
Kevin A. Broughan, Lecture Notes in Mathematics, No. 491, Springer-
Verlag, Berlin, Heidelberg, New York, 1975, x + 197 pp., $8.20. 

The literature on relations between the dimension of a metrizable space X 
and the existence of metrics on X having convenient special properties is 
rather extensive (see Nagata's book [5] for the only good exposition) and 
contains two really successful theorems. First, Hausdorff formalized the idea 
of estimating the measure of a set A in r-dimensional space by covering it with 
finitely many enspheres and taking their measures to be e|. It turns out (L. 
Pontrjagin and L. Schnirelmann, 1932; E. Szpilrajn, 1937; book [5, pp. 
112-116]) that the dimension of separable metrizable A is the infimum of the 
real numbers / such that for some metric on A, the /-dimensional measure is 
0. The second theorem is P. Ostrand's [6] (improving results of J. de Groot, 
1957, and J. I. Nagata, 1958; book [5, pp. 137-154]): metrizable X has covering 
dimension < n if and only if it has a metric in which, for all c, given 


