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ABSTRACT. Aspherical manifolds are closed manifolds which are A"(w, l)'s. 
They play a significant role in many branches of mathematics. This paper 
constructs "model" aspherical manifolds for various classes of IT and 
investigates and surveys their groups of homeomorphisms. It is not known 
whether aspherical manifolds having the same fundamental groups as our 
model manifolds can topologically differ from them. If m contains a normal 
abelian subgroup then the model aspherical manifolds are special instances 
of injective Seifert fiber spaces. The group of (singular) fiber preserving 
homeomorphisms of Seifert fiber spaces are characterized and criteria 
obtained so that each self-homotopy equivalence may be deformed to such 
a homeomorphism. Many of our model aspherical manifolds satisfy these 
criteria. Other applications are given to group theory, differential geometry, 
complex manifolds as well as topology. We have also included a list of 
unsolved problems. 

1. Introduction. This article, which is an expanded version of an hour 
address by the second author, is largely, but not exclusively, devoted to the 
study of aspherical manifolds. These are closed manifolds M whose universal 
coverings are contractible. Thus, they are K(TT, 1)'S where m is their fundamen­
tal group (77 = TTX(M)). Aspherical manifolds occur quite naturally in several 
complex variables (e.g., Riemann surfaces, quotients of bounded domains, 
hyperbolic manifolds, holomorphic Seifert fiberings), differential geometry (e.g., 
manifolds whose sectional curvature is < 0), Lie group theory (e.g., double 
coset spaces K\G/T, where G is connected, K a maximal compact and Y a 
torsion free uniform subgroup), group theory (e.g., groups whose cohomologi-
cal dimension is finite), number theory and algebraic geometry (e.g., "fiber 
varieties", Brieskorn varieties), and of course topology. (Specific contacts with 
these fields arise within this paper as either part of the theory or as illustrative 
examples.) This has led to their study by many diverse methods. Consequent­
ly, the exploration of topological properties and their topological identification 
and classification takes on added significance. We may ask which groups m 
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appear as the fundamental groups of aspherical manifolds and how we may 
give a complete list of such manifolds. Essential progress can and has been 
made on various aspects of these problems. 

To effectively study aspherical manifolds one needs to understand the 
relationship of the group of homeomorphisms of M, %(M), to the H-space of 
self-homotopy equivalences of Af, &(M). This is investigated in §§2 and 3. It is 
recalled how £(M), which is explicitly determined by 77 alone, also determines 
the compact Lie subgroups of %(M). In particular, we point out how this led 
to the construction of manifolds without any periodic maps. 

To begin an attack on the classification problem we shall assume that 77 has 
a normal subgroup T which itself is the fundamental group of an aspherical 
manifold. Now, if the quotient group, TT/T = N9 is "something like" a (not 
necessarily torsion free) uniform discrete subgroup of a Lie group, we may 
construct, for each possible 77, an actual specific aspherical manifold Mm(¥), 
Each Mm(iT) can be regarded as a "model" aspherical manifold for the group 
77. They usually enjoy rather spectacular topological properties. (For example, 
if T is abelian and N is finite our construction yields precisely all the flat 
manifolds. Many of the standard properties of flat manifolds may be deduced 
directly from the topological construction.) Moreover, no examples of aspher­
ical manifolds are known that have such "allowable" normal subgroups T and 
yet topologically differ from any of the model manifolds constructed herein. 

It is possible to organize the study into 2 parts. The first, taken up in §4, has 
the center of T trivial. This case will be developed further in a subsequent 
publication. The second is reduced to T itself being abelian. The remaining 
sections are devoted to this case. 

If T is abelian the construction of model aspherical manifolds is based upon 
the idea of Seifert fiber ings, §5. These are mappings /A: X -» Y very much like 
fiber bundle mappings. However, the "fibers" Fy = iTl(y) may vary from 
point to point, but not arbitrarily. Each "fiber" Fy is homeomorphic to some 
flat manifold. The space Y and the group N parameterizes the fibers and their 
fundamental groups. This construction does not depend upon asphericity and 
so much of what we do in §§5 through 9 is valid for arbitrary spaces. 

To make this more concrete suppose that (W,N) denotes a properly 
discontinuous action (not necessarily free) of a discrete group iVona simply 
connected space W. For each arbitrary group extension of the form 

(*) 1 -> Z* -» 77 -> N -> 1 

one may construct an action of the semidirect product Tk <> N on Tk X W in 
which the group N appears as a group of branched covering transformations 
and Tk is the /c-dimensional torus. There is induced a mapping, /x: X 
= Tk X W/N -> W/N = Y, with Fy = fTx(y) = vTl(w*) = (Tk X w)/Nw9 

where w* denotes the orbit of N through w E W, and Nw is the stabilizer of 
the action of N at w G W. The correspondence between (congruent) exten­
sions and (equivalent) actions of Tk o N on Tk X W is a natural bijective 
correspondence. The theory becomes practical when the induced covering 
action of JV on Tk X W is unbranched. This turns out to be the same as having 
each induced action Nw X (w X Tk) -> (w X Tk)free. The resulting mapping \x 
is then equivalent to what is called an infective Seifert fibering, and ii~l(w*) 
= (w X Tk)/Nw is a flat manifold. 
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As a first illustration consider a compact Kaehler manifold M. If M admits 
a connected compact group of holomorphic automorphisms then the orbit 
map M -> M* is a (holomorphic) injective Seifert fibering. This structure also 
enables one to fiber M over a torus (and even holomorphically fiber it over a 
complex torus after a possible deformation). Moreover, given one such 
manifold the theory usually (but not always) produces an infinite number of 
other similar complex examples all topological^ distinct from the original. See 
5.7(c). 

For a second illustration take an action (W,N) where W is an arbitrary 
contractible manifold with W/N compact. Then, corresponding to each 
extension (*), with IT torsion free, the construction yields a model aspherical 
manifold M {TT) which is an (injective) Seifert fiber space having TTX {M{TT)) = TT. 

We have mentioned that these models often possess "spectacular" proper­
ties. In particular, we wish to determine if it is possible to represent the outer 
automorphisms of TT in (*) by self-homeomorphisms of these models. 

An explicit formula for Aut TT and Out TT is determined in terms of Zk and 
N in §6. This is purely group theoretical and may be read completely out of 
context. 

In §7, we show that the group of automorphisms of Seifert fiberings ("fiber" 
preserving homeomorphisms) is the geometric analogue of §6. Here certain 
subgroups of Out m can always be realized by automorphisms of Seifert fiber 
spaces. In §8 a necessary and sufficient condition that the full group Out TT can 
be so geometrically realized is given. We then describe a large class of our 
model aspherical manifolds for which this condition can be verified. (No 
counterexamples are known.) This means our model manifolds possess 
extremely nice properties such as: Every self-homotopy equivalence can be 
deformed to a (fiber preserving) homeomorphism. 

To motivate the text we have included many examples and introduced, in 
what we hope is a natural manner, some central problems concerning 
aspherical manifolds. These problems are, perhaps, ideal for (topological) 
surgery theory, although we have used none herein. It is reasonable to expect, 
in the near future, that surgery may be able to detect negative solutions to 
some of the problems posed in the text. We have also tried to make the 
material reasonably self-contained whenever feasible. References to details, 
when they exist in a satisfactory form elsewhere, are given. In many ways this 
paper is a sequel to [13] but no knowldege of [13] is required. The reader does 
need to know the theory of covering spaces, extensions of groups and some, 
but not much, algebraic topology. 

Section Headings 
§2. Definitions, Examples, and Problems 1 and 2. 
§3. How IT Helps Determine the Compact Subgroups of the Automorphisms 

of Mm. 
§4. The Construction of Aspherical Manifolds: TT with Centerless Normal 

Subgroups. 
§5. Seifert Fiber Spaces. The Construction of Aspherical Manifolds: TT with 

Normal Abelian Subgroups. 
§6. Computation of Out TT. 
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§7. Fiber Preserving Homeomorphisms and Geometrically Realizing the 
Subgroup K of Out IT. 

§8. Deforming Homotopy Equivalences to Fiber Reserving Homeomor­
phisms. 

§9. The Domination of &{M) by %{M) and the Geometric Realization of 
Finite Subgroups of Out TT. 

We would like to express our appreciation to David Wigner for several 
suggestions and arguments and many fruitful conversations. 

2. Definitions, examples, and problems 1 and 2. A closed manifold M is 
called aspherical if M is connected and its universal covering M is contractible. 
Since 77;(M) = 0, mt(M) = 0, for all / > 1. Hence, M is a K(ir, l)-space, 
where IT = TTX(M). NOW among spaces having the homotopy type of a C-W 
complex the K(TT, l)'s are the spaces whose homotopy type is completely 
determined by the fundamental group alone. Thus one would suspect that if 
the K(TT, l)-space is also a closed manifold, then TT might come close to 
determining the topology of the manifold. This leads one to perhaps the most 
difficult and important problem concerning aspherical manifolds. 

2.1. PROBLEM 1-A. Let M and N be aspherical manifolds with *nx{M) 
isomorphic to TT\{N). Are M and N homeomorphic? 

Since any isomorphism of the fundamental groups y: TTX{M) - ^ TT\(N) may 
be geometrically realized by the induced isomorphism on the fundamental 
group of a homotopy equivalence g: M -> N, the problem may be stated 
perhaps more interestingly as follows: 

2.2. PROBLEM 1-B. Let g: M -» N be a homotopy equivalence between 
aspherical manifolds. Is g homotopic to a homeomorphism? 

One could go out on a limb and conjecture that the answer to Problem 1-B 
is always affirmative since no examples counter to this conjecture are known. 
However it must be warned that the truth of this conjecture in dimensions 3 
and 4 would imply the truth of the Poincaré conjecture in these dimensions. 
This problem is linked to surgery and to a modified form of a conjecture of S. 
P. Novikov on "Improved higher signatures" in Manifolds-Tokyo 1973, Univ. 
of Tokyo Press, edited by A. Hattori. See the section, "Some problems in 
topology", pp. 423-424. 

Since the problem seems so intractible one needs to impose more hypotheses 
to make any progress. One of the most striking results is that of C. T. C. Wall: 
A group IT is Z-polycyclic if TT is a finitely iterated extension of the infinite cyclic 
group Z. Wall has shown [44] that if m is Z-polycyclic, there exists an 
aspherical manifold with fundamental group m. Furthermore, in this class of 
Z-polycyclic groups Problem 1-B has an affirmative solution in all dimensions 
other than 3 or 4. Fortunately, this class of manifolds is very interesting in its 
own right, but unfortunately the class is rather "thin" among all the possible 
aspherical manifolds. See also [26]. 

Another approach to Problem 1-B is to make M = N and consider self-
homotopy equivalences. 

PROBLEM 1-C. Let g: M -> N be a self-homotopy equivalence. Is g homo-
topic to a homeomorphism? 

We shall investigate this in §§7, 8 and 9 for IT which have finitely generated 
abelian normal subgroups. 
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2.3. To dispel any notion that aspherical manifolds are an exotic class of 
manifolds we offer the following short list of examples. 

1. LOW DIMENSIONAL EXAMPLES. 

(a) dimension 1, Sl; 
(b) dimension 2, all closed 2-manifolds except the 2-sphere and the real 

projective plane; 
(c) dimension 3, all closed oriented 3-manifolds M such that TT is not 

isomorphic to a nontrivial free product, a finite group, nor Z. 
2. All closed Riemannian manifolds whose sectional curvature is < 0. 
3. The double coset spaces K\G/N where N is a discrete torsion free 

uniform subgroup of a connected Lie group G and K is a maximal compact 
subgroup. (The coset space K\G is diffeomorphic to a Euclidean space and 
any discrete uniform subgroup will act on the right so that the orbit map 
(K\G,N) -^U (K\G)/N is a regular branched covering map. This is un-
branched if and only iîNf)K=eGG which is the same as saying that N 
is torsion free.) 

4. A set of generators of the unoriented bordism ring 91* • 91* is generated 
as a graded polynomial ring over Z/2Z by aspherical manifolds. Moreover, 
these generators for all dimensions greater than 2 all contain a nontrivial 
center in their fundamental group and admit an action of the circle without 
fixed points. See [10]. 

5. As mentioned above, if m is poly Z (a finite iterated extension of Z) there 
exists an aspherical manifold Mm with fundamental group ir. This manifold is 
an iterated fibering over the circle and except possibly in dimensions 3 and 4 
the homeomorphism type of Mm is completely determined by the group IT [44]. 

2.4. All of the examples (except perhaps in 1(c) are covered by Euclidean 
space. This leads one to conjecture that the solution to the next problem may 
be affirmative. 

PROBLEM 2. If M is aspherical is the universal covering M homeomorphic to 
Euclidean space? 

This is a much more tractable problem (except in dimensions 3 and 4 where, 
once again, the truth of the conjecture would imply the truth of the Poincaré 
conjectures in each of these dimensions) due to the fact that it is known to be 
only a problem about the group IT. The most general results known appear to 
be by J. Stallings [41], R. Lee and F. Raymond [30], and F. E. A. Johnson [25]. 

THEOREM 1 [30]. If Mm is aspherical and m contains a finitely generated 
nontrivial normal abelian subgroup, then the universal covering of M is homeomor­
phic to Rm, m ¥* 3 or 4. 

The general principle which makes the argument employed in the proof of 
Theorem 1 work is described in [30, 6.3]. By the end of this paper we will have 
described many situations under which the general principle can be applied. 
Consequently, Theorem 1 will be considerably extended. 

Problem 2 and Theorem 1 offer another justification for studying aspherical 
manifolds. If the universal covering of Mm is Euclidean space then AÏm must 
have a very simple cell structure. The complicated cell structure of M all 
"untwists" in the universal covering and all the homotopy theoretic properties 
of M are functions of TT alone. The "combinatorial" structure of Mm then is 
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obtained from the way the group m acts as covering transformations on 
Euclidean space. In some real sense this means that aspherical manifolds 
should be the simplest of all types of manifolds. One might counter with 
spheres as being simpler since one assembles them with only 2 cells sewn 
together in an elementary way. But, one may ask, what are the homotopy 
groups of spheres? 

3. How 77 helps determine the compact subgroups of the automorphisms of 
Mm. We now wish to illustrate further how the group TT determines certain 
aspects of the topology of M. A good starting place for investigating any 
mathematical object is the set of automorphisms of the object. 

3.1. Let &(X) denote the space of self-homotopy equivalences of a space X, 
and %(X) the group of homeomorphisms of X. There is a natural inclusion 
/: %(X) -» S(X) which is an H-space homomorphism. (We assume that our 
spaces are always "reasonable", which will actually be the case for all our 
applications, so that no pathology arises from the compact open topology. 
Certainly pathology will be avoided if we assume that our spaces are locally 
compact, separable metric ANR's; see [21, Theorem 4.1].) There are two cases 
to consider. 

(a) THE BASED CATEGORY. All maps and homotopies fix a base point 
x0 G X. 

(b) THE UNBASED CATEGORY. The maps and/or homotopies are not required 
to fix a base point x0 E X. 

Let ë(X; x0) be the subspace of &{X) for which each homotopy equivalence 
fixes x0. Let the automorphisms of <nx(X,x0) be denoted by Aut 77j(Af,;c0) and 
the inner automorphisms by Inn *nx(X,Xç)). Let Out 7rx(X,x^), the outer auto­
morphism group, be the quotient group, Aut 7rx(X,x0)/lnn 7rx(X,x0). 

For any self-homotopy equivalence ƒ: (X,x0) -> (X,x0), we induce an 
automorphism f*: TTX(X,X0) -» nx(X,x0). If ƒ is based homotopic to g the 
automorphisms agree and yield a representation 

(a) 9: 7T0(&(X; x0), 1*) -» Aut TTX (X, x0). 

In the unbased case, we choose, arbitrarily, paths fix from x0 to an arbitrary 
x. For/: (X,x0) -> (X,x) and a loop a: (1,0,1) -> (X,x0,x0), we get the loop 
fix* f (a) fix based at x0. (We read composition of paths from right to left as with 
functions.) Thus, we have a map ^ : &{X) -> Aut TTX(X,X0) which assigns to 
each self-homotopy equivalence an automorphism of 77j (A", x0). If g is homo-
topic to ƒ the automorphisms will agree modulo an inner automorphism. 
Hence we receive a if-space homomorphism, ^ : &{X) -> Out TT\(X, X0), which 
factors through the representation, 

(b) % : *b(S(*), 1*) -> Out *i(*,x0). 

These representations are just one aspect of the following. The evaluation 
map co: &(X) -> X defined by o)(h) = h(x§) is a fibration in the sense of 
Hurewicz [23, p. 83]. The fiber is nothing but S(X; x0). The homotopy exact 
sequence for the fibering (with connected X) for low degrees is 
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> 7TX(&(X), lX) -> *[(X9XQ) 

-> ir0(&(X; x0), 1*) -> «b(G(X)9 lx) -> 1. 

For X which are K(TT9 1)'S the representations 9 and % are isomorphisms. 
Moreover, if X has the homotopy type of SL finite complex then the groups 

mt{&{X\ \x) = rç-!(S(*; *o), 1̂ ) = °> *> *> 

and 7T1(S(Ar), 1̂ ) = 2(TT), f/*e center #ƒ TT [20]. Hence, with a little care, the 
homotopy exact sequence becomes the well-known exact sequence of group 
theory: 

1 -* 2(*r) -» (TT) = wi(X9x0) -> Aut ^ ( A ^ Q ) -> Out vx(X9x0) -» 1. 

This means that &(X) has the homotopy type of AT(£(ir), 1) X Out m. This 
immediately raises our next 

PROBLEM 3. If X has the homotopy type of a finite complex and X is a 
K(TT, 1), is %{TT) finitely generated? 

If %(ir) is finitely generated and has rank k > 0, then &(X) has the 
homotopy type of Tk X Out 77, where T* is the /^-dimensional torus. It is 
unlikely that the answer to Problem 3 will be affirmative. Therefore, we 
probably instead should state the problem in terms of an aspherical manifold. 

3.2. Let %(X) be the subspace of S ^ ) consisting of the homeomorphisms 
of X. It is a topological group under our reasonable assumptions on the space 
X. The inclusion /: %(X) -» &(X) is an //-space homomorphism. For X = M, 
an aspherical manifold, this leads to the difficult and significant 

PROBLEM 4. Is i a homotopy equivalence? 
The answer is known only when m < 2 (affirmative). In dimension 3 it is 

known from Waldhausen's work that i induces an isomorphism on the 0* 
homotopy groups, that is, on the group of path components provided that the 
manifolds are "sufficiently large" and irreducible [43]. No other general 
information seems to be known. Much of what we have to say in this article 
deals directly with finding conditions on certain M that imply /* is an 
epimorphism on the homotopy group level. 

ADDED IN PROOF. It has recently been shown by A. Hatcher and W. C. 
Hsiang and R. Sharpe that / is not a monomorphism on TT0 for a class of 
aspherical manifolds which include tori. 

Allen Hatcher in Homeomorphisms of sufficiently large P2(R) irreducible 3-
manifolds (to appear in Topology) has shown that T7J(OC(M3)) S center of 
(flî(Af3)) and ^((Af3)) = 0, i > 1, for the manifolds mentioned in the title. 
His results are also valid in the PL category. Our results (7.6 (Theorem 9), 7.8, 
8.3(b)-4, and §9 (2.4)) then imply that the group of fiber preserving diffeomor-
phisms is a deformation retract of 3C(M3) for 3-dimensional Seifert fiberings. 
Corollary 2 of 6.3 already gave a very explicit formula for TT0(%(M3)) by virtue 
of [43]. 

3.3. Let G be a compact Lie group embedded as a closed subgroup of the 
group of homeomorphisms, %{M\ of the aspherical manifold Mm. That is, we 
assume that G acts effectively on Mm. Let G0 denote the connected component 



DEFORMING HOMOTOPY EQUIVALENCES TO HOMEOMORPHISMS 43 

containing the identity of G. The following result imposes strong restrictions on 
the nature of G and is very relevant to Problem 4. 

THEOREM 2. (a) The based case. G0 must be the identity and the representation 
9 o i: G -> Aut 77j (A/, x0) is a monomorphism. 

(b) The unbased case, (i) G0 = Tk,for some k, where 0 < k < £(TT). 

(ii) All stability groups of G0 are finite subgroups of Tk> consequently, the Euler 
characteristic xC^O must be 0> when k > 0. 

(iii) If %{TT) = 0, then the representation ^ o /: G -» TTI(M,X0) is a monomor­
phism. 

The faithfulness of the representation SF o i is A. BoreVs Theorem and is 
proved in [17, §3]. The rest of the theorem can be found in [11, §§5, 6, and 7], 
The key to the arguments concerning G0 is the monotonicity of the evaluation 
homomorphism on the fundamental groups. Let (G,X) be an action of a path 
connected group on X. For each x E: X define the evaluation map 

ev*: (G,e)->(X,x) 

by ev* (g) = g(x). This induces the evaluation homomorphism 

ev*: irx(G,e) -> <nx(X,x). 

The image is a central subgroup of TTX (X, x) and is "independent" of the base 
point (as long as X is path connected). For aspherical manifolds, one proves 
that ev£ is a monomorphism. From this fact one deduces the results. See [11, 
§§5, 6 and 7] for complete details. 

The theorem shows that IT gives bounds on the size of any compact G. In 
particular, G is finite whenever it acts with fixed points, xC^O ^ 0, or the 
center of m is trivial. Well-known examples of aspherical manifolds for which 
the center is known to be trivial are: 

1. Closed Riemannian manifolds with sectional curvature less than 0 [4]. 
2. M, for which x ( ^ ) # 0 [20], [42]. 
3. Any closed 2-manifold with genus < 0; any irreducible aspherical 3-

manifold which admits no action of the circle. 
4. K\G/N, where G is the adjoint form of a semisimple Lie group without 

compact factors and N is a uniform discrete torsion free subgroup of G. 
3.4. MANIFOLDS WITH NO ACTIONS. Certainly, if one can compute 

Aut IT or Out IT one can then hope to build manifolds with very few or no 
actions of finite groups. It had been long conjectured that "most" manifolds 
should exhibit little or no symmetry. That is, the only finite subgroups of 
%{M) would be the trivial group. In [17] and [18] methods for computing 
Aut m and Out m are developed and the following examples are constructed. 

THEOREM 3. There exist aspherical manifolds Mm in all dimensions greater 
than 2 for which the only actions of finite groups are involutions. The fixed point 
set is always a disjoint collection of circles. Furthermore if m > 3, all Mm can be 
chosen to be orientable with all involutions preserving orientation for m odd and 
reversing it for m even. There exist aspherical 4-manifolds on which every finite 
group of%(M) acts freely. There exist in dimensions 7, 11, 16, 22, 29, and 37 
aspherical manifolds which admit no effective actions of any finite groups. 
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There exist aspherical 4-manifolds on which every finite group of %{M) acts 
freely. 

There exist in dimensions 7, 11, 16, 22, 29, and 37 aspherical manifolds 
which admit no effective actions of any finite groups. 

All the examples constructed above have solvable fundamental groups. In 
fact, in the last set of examples we construct an infinite number of distinct 7-
dimensional solvmanifolds for which Out m contains no elements of finite 
order. With care one can actually make Out m = 1 for some of the 7-
dimensional examples. In 6.12 we shall give the computation of Out ir to yield 
the first assertion of Theorem 3. 

3.5. No examples of simply connected closed manifolds without periodic 
maps are yet known. Of course one can find oriented compact simply 
connected 8-manifolds W with our 7-dimensional examples as boundary. 
These manifolds cannot have any periodic maps. It is tempting to match two 
copies of W along their boundaries and then form the connected sum with 
complex projective 4-space, C/4. 

PROBLEM 5. Does the resulting closed simply connected smooth 8-manifold 
admit any action of a finite group? 

3.6. E. Bloomberg has studied the connected sum of aspherical manifolds. 
The resulting manifolds are no longer aspherical, but nevertheless by choosing 
distinct pairs of the 4-dimensional examples of Theorem 3, he has also been 
able to construct closed 4-manifolds (not aspherical) without any actions of 
finite groups [5]. 

Recently, F. Raymond and J. Tollefson have found orientable aspherical 3-
manifolds M3 which admit no actions [38]. One may then apply a very strong 
result of P. K. Kim and J. Tollefson [35, Corollary 1] to conclude that X # M3 

admits no PL involution for any closed prime 3-manifold X different from 
S2XSlorM3. 

[5] and [35] indicate that analysis of aspherical manifolds leads to interesting 
results on more complicated classes of manifolds. By using a cohomological 
version of some of the techniques employed in [5], one may show the 
following: 

THEOREM 4. The connected sum Mx # • • • # Ms9 s > 1, of any aspherical n-
manifolds n > 1, does not admit any effective action of the circle. 

If this is now coupled with Conner's result that the unoriented bordism ring 
%*{pt) is generated by aspherical manifolds we have the 

3.7. COROLLARY. If M is a closed n-manifold, then there exists closed connected 
n-manifolds N, bordant to M, with the property that every compact Lie subgroup 
of %(N) is finite. 

This corollary can be interpreted as a form of the oft repeated quip, "Most 
manifolds should exhibit little or no symmetry". 

4. The construction of aspherical manifolds: TT with centerless normal 
subgroups. 

4.1. There are two difficult and distinct problems envisioned in the title of 
this section. 

PROBLEM 6. Which groups m can be the fundamental group of an aspherical 
manifold? 
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PROBLEM 7. If TT is the fundamental group of an aspherical manifold can we 
give an actual explicit construction of an aspherical manifold for the group 7r? 

There are some very general and abstract criteria contributing to our 
knowledge of the first problem. For example, TT must be a Poincaré duality 
group in the sense of Johnson and Wall [27] and Bieri [1], [2], [3]. In particular, 
TT must be torsion free, finitely presented, have cohomological dimension finite, 
satisfy Poincaré duality in the strongest possible sense (that is K(TT, 1) is a finite 
Poincaré complex). These conditions impose strong restrictions on TT (see the 
papers mentioned above) but a complete and specific list of such groups is not 
possible at this time. 

One is led to treat certain portions of the problems which arise naturally in 
some special algebraic or geometric way. With this in mind Problem 7 takes 
on added value. A feature therefore of the examples that we construct should 
exhibit interesting geometric and algebraic properties. Furthermore each 
constructed aspherical manifold Mm(p) can be regarded as a model for all the 
other aspherical manifolds with the same fundamental group (if there are any 
others!) and give a hold to focus on Problem 1-B. The most comprehensive 
answer for special TT are those IT which are iterated extensions of Z (poly Z-
groups); see C. T. C. Wall [44] and the examples of 2.3. Part of our purpose 
here is to partially answer Problems 6 and 7. 

4.2. Certainly a reasonable attempt should be made on those groups TT which 
contain a normal subgroup T which is the fundamental group of an aspherical 
manifold X. Consider groups TT of the form 

(*) l - » r - > w - > t f - > l . 

If N is the fundamental group of an aspherical manifold Y then one would 
suspect that one could construct an aspherical manifold M (IT) which would 
fiber over Y with fiber X and whose homotopy exact sequence at the 
fundamental group level is (*). Such a construction is not known in general 
but it can be affected in certain special cases as we shall point out later. But 
first let us restrict the group T but widen the possibilities alloted to N. Let us 
suppose for the rest of §4 that N operates properly discontinuously on a 
contractible manifold W with W/N compact. Thus the orbit map v\ W -* W/N 
is a branched covering map and branching occurs when N has elements of finite 
order only. Of course an important example to keep in mind is a not necessarily 
torsion free uniform discrete subgroup N of a Lie group G. On K\G, where K 
is a maximal compact subgroup, N acts properly discontinuously and W/N 
corresponds to K\G/N. 

(This type of example is not as innocuous as it may appear at first glance. 
We would like to pose at least the following. 

PROBLEM 8. If M is aspherical, does there exist a Lie group G (with at most 
a finite number of connected components) and a torsion free uniform discrete 
subgroup TT so that M is homeomorphic to the double coset space K\G/TT ?) 

4.3. Now let X be an aspherical manifold with fundamental group T and let 
us assume that 

(i) T has trivial center, 
(ii) for <j>: N —> Out T, which completely determines (*) up to congruence, there 

exists a homomorphism $: TV -» %(X) so that Sfr ° i ° $ = <#>. Then, 
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THEOREM 5. The group IT is the fundamental group of an aspherical manifold 
M{TT) if and only if the extension IT is torsion free. 

Thus, under the hypothesis, the crudest necessary condition on TT (that m be 
torsion free) is also sufficient for TT to be the fundamental group of an 
aspherical manifold. 

To prove our theorem we shall rely upon [11, §2]. Let us define a properly 
discontinuous action of N on P = X X W by 

(x, w) X a -> (x,w) • a = (<t>(a~l)x,w • a). 

Choose base points x0 E X, w0 E W and x0 X w0 = PQ E P. For each x 
E X,w E W, choose paths fi(t) and S(t) beginning at x0 or w0 and terminat­
ing at x or H>, respectively. The path (/?(/), 5(7)) begins at (x0 X w0) and 
terminates at ^ = (x X u>). Each homeomorphism (x, w) -> (x, w) • a defines 
an automorphism of n\(P,Po) using the paths (fi(t),8(t)). The automorphism 
depends upon the choice of paths but only up to inner automorphism. Thus 
one gets a homomorphism N -» Out ir\(P9po) = Out T. By the construction 
of §2 of [17] we see that this homomorphism agrees with <f>. Furthermore, on 
the universal covering P = X X W we get an action of TT where TT satisfies (*) 
up to a congruence. We remark that we must make one change from [17, §2] 
where the actions are all given on the left. Since we want right actions we turn 
to [14, §3.10] where the formulae in terms of left actions are turned into 
formulas for actions on the right. Notice that since the center of T is trivial the 
extension, up to congruence, is determined only by <J>. We still wish to 
determine when the action of TT on P are covering transformations or what is 
the same, when the action of N on P are covering transformations. Let 
a E Nw9 the stabilizer of w, for some w E W. Then (x,w) • a = (^(a)""1^,^) 
and this equals (x,w) if and only if <l>(a~l)x = x. But the right action defined 
by Nw X X -» Xy x -> <j>(a~~l)x, must be free if (x, w) • a ¥= (x,w), for all 
a E Nw. Just as before the action, free or not, determines an extension 
l-*r->9Tw--*JVw--»l. This extension is clearly that induced by (*) and the 
inclusion Nw ^ N. This means we have the commutative diagram of exten­
sions: 

1 >T >n >N • 1 
t t t 

= \i 

Of course Nw must be finite and we may choose a E Nw so that the cyclic 
group Z/qZ generated by a is of prime order, q. Without loss of generality we 
may think of Nw c~ Z/qZ. Then if <nw has any elements of finite order other 
than e, they must map onto generators of Nw since T is torsion free. Thus 
TTW C m contains a group, //, isomorphic to Z/#Z and consequently on 
X X W = P, the action of H must leave an acyclic (cohomological) subman-
ifold fixed. Thus the induced action on X X w of Nw is not free. On the other 
hand, if irw is free the action of Nw on X X w is free [17, 2.4]. 
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Therefore IT is torsion free if and only if the induced action of N on X X W 
is a covering action. Of course, 7TX({X X W)/N), in this case, is just that given 
by the extension (*). 

4.4. To put 4.3 into perspective algebraically we may consider any extension 
of the form 1 -» T -» TT —> N -» 1 where T is the fundamental group of an 
aspherical manifold so that 2(T) = 1. Then for each finite subgroup N{ of N 
the induced extension 1 -» T -> ^ -» N\ -» 1 is determined by ^>|^: JVj 
-> Out T. If <p\Ni is not an embedding, then nj and hence TT would have to 
contain elements of finite order. Thus for m to be torsion free it is necessary that 
every finite subgroup of N be mapped monomorphically by </> into Out T. 

4.5. It is interesting to study the mapping P = (X X W)/N - ^ W/N. Let 
w* = v(w). Then /i_1(w*) = ^/#w> whether or not the action on X X W is 
free. However, there is a definite regularity to this map, at least locally. If we 
take a slice S„ at w E W, then iVw acts invariantly on Sw so that Sw/Nw 

= W/JV near the image w* = r(w). Further, the orbit map X X W -> X 
X W/N can be described locally near x X w to be X X Sw -» XNw X Sw. There 
are two induced projections which make the diagram commute: 

X+-

K. 
m» 

X xS„ 

F H 

- ^ w C ^ 

/ ^ H IN 

•SJNWCW/N 

For a point s* = v(s), /x"1^*) = X/(NW)39 and ^_1(^*) = SW/(NW)X. In par­
ticular, if JVW acts freely on A" (if IT is torsion free) then q is a fibering with fiber 
Sw and structure group Nw. The map /i assigns to each orbit of Sw the orbit of 
X under the action of (Nw)s, where s lies on the particular orbit on Sw. Thus 
when N acts as covering transformations on XX W, the "fiber" 
ju-1(w*) is X/Nw and a neighborhood of /x_1(w*) is a fiber bundle over X/Nw 

with fiber a slice, Sw, of the action Nw on JF at w and with structure group Nw. 
4.6. Our theorem is interesting only if we can show that there are T for 

which hypothesis (ii) can be satisfied. We know of no examples for which 
hypotheses (i) and (ii) fail to be satisfied. Here are some examples for which 
the hypotheses can be verified. 

1. Let (W,N) = (R^Z). Then any aspherical manifold X for which 
TTX(X) = T, %(T) = 1, and * o /: %(x) -» Out T is surjective implies that all 
possible extensions 1 -> T -> m -> Z -» 1, must be the fundamental group of 
an aspherical manifold. For <£: Z -> Out T determines a congruence class of 
extensions. The group 7r must be torsion free since both T and Z are. The 
manifold P = X XzR

l is obtained by just taking the mapping torus of 
£(1): X -> X For example, if X is a closed 2-manifold ^ 5 2 or RP2, any self-
homotopy equivalence can be deformed to a homeomorphism. Hence %(X) 
-> Out (T) is surjective. 

We shall exhibit in 8.3 many more examples of aspherical X where the 
homomorphism %{X) -> Out (T) is onto. 

2. In [3] we showed that almost all manifolds X which are fibered over the 
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circle with fiber a /c-dimensional torus have the property TTX(X) has trivial 
center and that the homomorphism %{X) -> Out V is surjective and splits. 
Thus no matter which (W, N) we may choose the extensions 1 -» T -» m -* N 
-> 1 all can be geometrically realized by our construction if and only if IT is 
torsion free. 

As a specific illustration consider X3 which is the mapping torus of the 
homeomorphism h: T2 -> T2 defined by h{zx,z2) = (z2,z1z2). The group 
Out (T) e* Z2, and %(X3) -> Z2 -> 1 splits. Thus for any <J>: N -> Z2, if iV 
contains elements of finite order then 7r cannot be torsion free. (We do not 
need that N operates properly discontinuously on a contractible manifold.) 
Thus the only possibilities are when N is torsion free. If, moreover, we have 
an action (W,N) then our constructed M(TT) is of the form XX W/N or 

(* XZ/2Z WO/(kernel <j>), 

which is a fiber bundle over W/N with fiber X and structure group Z/2Z. 
3. Let A" be a compact flat manifold with fundamental group T. Let Aff (X) 

be the group of dijfeomorphisms of X which preserve the Riemannian connection 
associated to X. The connected component of the identity, Aiff0(X) is 
isomorphic to a /c-torus with k equal to rank T. It is shown in [9] 
that Aff (Ar)/Aff0 (X), under ^ o j9 is mapped isomorphically onto 
Out (TTX (X,X0)). We shall also obtain in §§8 and 9 a proof of this theorem as 
a particular application of our general study of injective Seifert fiberings to be 
initiated in §5. Thus %(X) -» Out TT^X^XQ) is surjective and, as we shall see 
in §9, at least a portion of this epimorphism splits. Of course, there exist flat 
manifolds whose fundamental groups have trivial center. These groups are 
precisely the (torsion free)Bieberbach groups T with Hl(T;Z) = 0. 

This type of example will be generalized considerably for injective Seifert 
fiber spaces in §9. 

4.7. So far we have concentrated on groups, T, with trivial center. Let us 
now assume that T has a non trivial center 2(T). Form an extension 1 -* T 
-» m -> L -» 1, then £(T) is a normal subgroup of TT since £(T) is character­
istic in T. Thus we have an extension 1 -* %(T) -» TT -> N -> 1 where the 
action of N on 2(T) is given by conjugation by elements in TT. Those elements 
of IT which are images of elements of T all induce the identity on 2(T), thus 
the representation, </>: TV -> Aut £(T), factors through TT/T = L. 

Once again we run into Problem 3. (No examples are known where %(T) is 
not finitely generated.) Let us therefore, for our purposes, consider those T for 
which %(T) is finitely generated. In trying to construct IT we would have 
specified the group TT/T and its action on Out T. This clearly leads to an 
extension 

1 -> r /2 ( r ) -+ IT/%(T) = N -> ir/T -» 1. 

Therefore we /ose «Ö generality, as far as Problems 6 and 7 are concerned, i/i 
studying those extensions of a finitely generated torsion free abelian group, Zk

9 by 
a discrete group N. 
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5. Seifert fiber spaces. The construction of aspherical manifolds: 77 with 
normal abelian subgroups. 

5.1. In this section we shall describe a special type of Seifert fibering. These 
are the geometric objects which will enable us to attack our problems for 
aspherical manifolds when m has a finitely generated normal abelian subgroup. 
Our method applies to aspherical manifolds but does not depend essentially 
on them. Therefore we no longer restrict ourselves to aspherical manifolds but 
we shall not hesitate to illustrate and interpret our results in those terms. We 
introduce the term injective Seifert fiberings since it is this class of Seifert 
fiberings which are most relevant to the problems we have listed. Later, in this 
section, we shall briefly describe the more general class of Seifert fiberings 
studied in [14] because many of our results can be extended to general Seifert 
fiberings. Furthermore, we hope the success at hand may entice the reader to 
explore these general Seifert fiberings of [14] which arise quite naturally in, for 
example, differential geometry, algebraic geometry, complex manifolds, trans­
formation groups, topology and number theory. 

Once again we mention that we tacitly assume that all spaces X are not 
pathological. In particular, they are nice enough to admit a viable covering 
space theory and occasionally the methods of algebraic topology. 

5.2. INJECTIVE SEIFERT FIBER SPACES. Let N be a discrete group and 
<f>: N -» Aut (Zk) be a homomorphism. Note that 

Aut (Z*) = Out (Z*) = Aut (*i(7*, 1)) - GL (*,Z). 

Since GL (k, Z) C GL (k, R) and preserves the integer lattice, every automor­
phism of the lattice gives rise to a continuous automorphism of Tk. In fact, 
Aut (Z*) = Aut (Tk,1). Thus </> also is a representation of N into the (linear) 
automorphisms of Tk. 

By an injective Seifert fiber space (Tk,X,<t>) we shall mean a path connected 
space X for which: 

1. There exists an epimorphism X: ITI(X9XQ) -* N -» 1. 
2. On the covering space X', corresponding to the kernel of A, there exists a 

structure of a principal fc-torus bundle which is compatible with the group of 
covering transformations N on X'. That is we require 

(tx')a = (*(a-1)(0)(*'a) 

for all / E Tk
9 x' E X',a E N. 

3. The quotient space Tk\X' = W is simply connected. 
4. The kernel of X is isomorphic to Zk. 
Note the condition {tx')a == (<t>{cCx)){i)(x'a) of 2 on X' really is equivalent 

to defining a right action of the semidirect product Tk o N on X' by 

(x' )(/,a) = (tx')a. 

The group law is 

(/,a)(A,j8)-(/*(a)(*),afi8) 

which comes from 
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((*')(', «))(M) = ((f*»(M) 

= Ma-l)(t)(x'aMh,P) = (h((<t>(a-])(t))(x'a)))P 

= ((<#,(a-,))(<,(a)(A))((<|>(a-1)(0)(x'«)))^ 

= (^«_1)((*(«)(A))W)(*'«))/8 = (K<#»(«)W)x')(«/S). 

On X' we may factor out first the action of Tk. Put W = r*\A". Induced 
on Wis an action (W,iV) so that the corresponding natural maps: 

(7*, X', N) 7 ^ • (W, N) 

IN IN 

(X = X'lN) • W/N 
M 

commute. We claim that the action (W,N) must be properly discontinuous. Let 
w G W. Then let Nw be the stabilizer of w and let x' 6 I ' so that /i'(*') = w. 
The action of iVw on X' leaves (JU/)~~ (w) invariant. In fact, if v' is to be the orbit 
map of covering transformations the action of Nw on the Tk orbit through x' 
must be free. Thus we may characterize ii~l(p(w)) as Tk(x')/Nw9 the orbit 
space of JT*(;C') under the free action. 

It can be checked that the action (Tk,Nw) is equivalent to an action 
determined by a crossed homomorphism x- Nw -* Tk which, in turn, determines 
an element of H^(NW; Tk). Each crossed homomorphism induces an action 
given by t * a = ^(a"1(0)x(a""1)« Cohomologous crossed homomorphisms 
yield equivalent actions and conversely. See [14, p. 133] for a very similar 
argument. The coboundary homomorphism 5: H^(NW; Tk) -» H^(Nw;Zk) is 
an isomorphism. The element Sx represents an extension TTW of Zk by JVW. This 
group 7TW is torsion free, if and only if the action (Tk,Nw) is free. See [14, §§3 
and 4] and 5.3 for more details. 

Let us call the mapping JU: X -» W/N arising from (Tk,X,<j>) an infective 
Seifert fibering. We have seen that W/N parametrizes both a class of 
immersions of the &-torus Tk in X and the family of group extensions 
corresponding to the fundamental group of the "fibers", n~l(v(w)). In fact, 
H~l(v(w)) is the quotient Tk/Nw of the torus Tk by a free action (Tk,Nw) 
described by an explicit element x S H^(NW; Tk). In turn, under the co-
boundary isomorphism Sx £ H^(Nw;Zk) defines an extension 1 -* Zk -> nw 

-» JVW -> 1 which is the group extension given by the covering projection 
7* _> r*/#w- Therefore each Tk/Nw = JUT*0<VV)) is zflat manifold and 7rw is 
a classical (torsion free) Bieberbach group. 

5.3. BIEBERBACH CLASSES. As can be seen, Seifert fiberings, even of the 
injective type, are more general than fiber bundle projections since the 
topological type of the "fibers", pTx{v(w)\ may vary from point to point. To 
give a classification of Seifert fiberings over a space Y, say in the spirit of fiber 
bundles, one must carefully take into account all possible types of singulari­
ties. We do this now by investigating the converse of the construction we have 
just given. 
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Let us begin with a discrete group N and a homomorphism </>: N 
-* GL (k,Z). We choose a properly discontinuous (not necessarily free of 
course) action of N on a simply connected space W to be denoted by (W,N). 
We are going to describe all possible injective Seifert fiberings /x: X -> Jf//V, On 
the product space Tk X W = X' we impose an action of iV on À7 which is 
compatible with the obvious toral action. In fact, we seek TV-actions so that 

(tx')a = (Wa-lMtM**). 

In [11, §8], [12] and [14, §§3.9 and 4] we show that (the equivariant equivalence 
classes of) such Tk o N actions are naturally in 1-1 correspondence with 
elements of the 2nd-cohomology group H^(N;Zk). We shall describe this 
correspondence more carefully in §7 where the mechanism is needed explicit­
ly. For each (X', Tk ° N)we may now form X — X'/N. The induced mapping 
/A: X -> W/JV= (Tk\X')/N is our desired Seifert fibering. There is but one /tow 
so far and that is the action (X',N), while properly discontinuous, may not be 
free. If (X',N) is not free, the mapping v'\ X' -> Jf'/JV is a regular branched 
covering map with nontrivial branching. While this offers no difficulties which 
cannot be easily overcome for building a theory (and corresponds to a 
modification of condition 2 in our definition of injective Seifert fibering), we 
need here only to single out those actions which give rise to (unbranched) 
covering transformations. 

Let BQ be the set of actions (or, equivalently, cohomology classes) for which 
the action of N on X' is free. We call an element of B^ a Bieberbach class and 
Bç the set of Bieberbach classes. In general, B^ is not a subgroup of H£(N; Zk). 

We shall now describe how one may characterize B^ cohomologically. Let 
a G H^(N;Zk) determine our action (X',N). For each w G W, take the 
stabilizer Nw C N. Nw is finite, since (W,N) is properly discontinuous. On 
ix'~l(w) = Tk, there is induced an action (Tk,Nw) from (X',N). (The group 
Nw leaves ii'~l(w) invariant and any other element fi G N sends ii'~~l(w) onto 
H'~l(w /?).) Thus the stabilizer of x' G Tk = y!~x{w) is contained in Nw. In 
order that N act freely on X', Nw must act freely on Tk. This induced action 
corresponds to the cohomology class i*(a) induced from the homomorphism 

i*:H*(N;Zk)-+H$(Nw;Zk) 

which arises from the inclusion /: Nw -> N. As mentioned earlier, the corre­
spondence between actions and cohomology classes is natural. To each class 
in Hf(Nw;Zk) there corresponds the Baer equivalence class of extensions 
1 -» Zk -» IT -> Nw -> 1. The action (Tk,Nw) induces an action on the 
universal covering of Tk by the extended group irw with Zk corresponding to 
the group of covering transformations. Thus, irw = irx{Tk/Nw) if the action 
(Tk,Nw) is free. To be a free action is equivalent to TT̂  being torsion free. Thus, 
the induced extension irw must be a classical Bieberbach group (a torsion free 
extension of Zk by a finite group) whence our choice for the name of " B^ " . 
To summarize our characterization of B^ we have 

5.4. PROPOSITION [14, 3.1]. The action (X\N) is free, if and only if, the induced 
extension i*(a): 1 -» Zk -» irw -> Nw -» 1 is torsion free, for each w G W. 

Furthermore, for each Bieberbach class a (that is, when the action (Tk X W,N) 
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is free) the group extension, as an element of H^ (JV; Z ), is the same as 
the extension induced from the covering projection v'\ X' -» X, namely, 
1 -> <nx(T

k X W) -* <nx(X) -*N-*\. 

(We should remark that the condition 4, in conjunction with the first 3 
conditions, is equivalent to the principal toral fiber bundle X' -» W being a 
trivial product bundle. If a fails to be a Bieberbach class then IT maps onto 
ir\{X) with nontrivial kernel and the regular covering vf will be branched.) 

Thus to describe all the possible injective Seifert fiber spaces (Tk, X,<j>) we 
(i) take any properly discontinuous action (W,N) of a discrete group JV on 

a simply connected space W; 
(ii) form, on Tk X W, all possible Tk <> N actions; these correspond to the 

elements of H*(N;Zk); 
(iii) find the subset 2L C ff£(N;Zk) of Bieberbach classes; these corre­

spond to the (Tk X W,N) actions which are free. 
The spaces X = (Tk X W)/N with the JV action satisfying (i), (ii), (iii) are 

all the possible injective Seifert fiber spaces satisfying 1, 2, 3, 4 of 5.2 with 
/A: X -» JĴ JV the associated injective Seifert fibering. 

5.5. ASPHERICAL MODELS. We may now characterize those Bieberbach 
classes that give rise to K{TT, l)'s. Suppose (W,JV) is a properly discontinuous 
action and Wis contractible. Then for each Bieberbach class a E H£(N;Zk) 
corresponding to an extension a: 1 -> Zk -» m -> JV -» 1 the space 

* = (7* x W)/N 

is a AT(TT, 1) and the map X -* Jf/JV is a Seifert fibering. For example, suppose 
W is contractible on which JV acts freely (as covering transformations), then 
W/N is a #(JV, 1). Now each class a E H£(N; Zk) must be a Bieberbach class 
since JVW = 1, for each w E: WAX is this particular construction that plays a 
crucial role in [30]. 

The example cited is not really immediately germane to our Problems 6 and 
7. For, in general, W will likely be infinite dimensional if N is to act freely. 
Since we want finite dimensional K(TT, 1)'S (corresponding to groups IT with 
finite cohomological dimension) we assume that W is a finite dimensional 
contractible space and that JV acts properly discontinuously on W. Since every 
/^-subgroup of N must fix some point of W, by the Smith theorems, one can 
easily prove that the extension a: l->Zk-+ir^>N-*lis torsion free, if and 
only if, a E H*(N; Zk) is a Bieberbach class ([14, 3.9] and/or [11, 8.1]). 

We are led to the following important 

THEOREM 6 ([11] AND [14]). Let (W,N) be a properly discontinuous action of 
a discrete group of N on a contractible manifold Ws so that W/N is compact. 
Then for each torsion free extension a: l -»Z*->7r -»JV-* l there exists a 
"model" aspherical manifold Mm(m) and a Seifert fibering /x: Mm(tr) -> W/N. 
Furthermore m = k + s. 

It is to be remarked that although the explicit models Mm(ir) appear to 
depend upon W and the explicit action of N the group m does not. Any 
contractible manifold W with any properly discontinuous action will suffice. 
Moreover, if m is to be the fundamental group of a finite dimensional K{nr, 1) 
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it must be torsion free. Thus, again, the weakest possible necessary condition 
on IT to be the fundamental group of an aspherical manifold is also a sufficient 
condition. Furthermore, our models for Mm(7r) assume a very nice form. For 
example, if (W,N) is smooth, then Mm(iT) will be a smooth manifold and the 
immersions of Tk will be smooth. 

Unfortunately we do not know if each aspherical manifold Mm(V) with 7r 
containing a finitely generated normal abelian group has a model which arises 
this way. This is due, of course, to our not knowing whether the quotient group 
7r/Zk = N acts properly discontinuously on some contractible manifold W so 
that the quotient space is compact. More generally let us pose 

PROBLEM 9. If Mm is aspherical and T is a normal subgroup of TTX (M ) so that 
T is the fundamental group of some aspherical manifold Yk, then does 
7T1(M)/r = N act properly discontinuously on some contractible manifold 
Wm~k so that W/N is compact? 

There seems to be no procedure for attacking this problem in general. 
However, there is certainly no shortage of examples of properly discontinuous 
actions on contractible manifolds. Moreover, if given a (W,N) and one does 
find a Bieberbach class a in H^(N; Zk\ then, in general, B^ contains many 
more elements; see [11, 9.3] and [14, 3.3]. 

5.6. GENERAL SEIFERT FIBERINGS. The reader will have noticed that condi­
tions 1-4 of 5.2 are stronger than needed for much of the previous analysis to 
be carried out. To construct a workable theory of Seifert fiberings it only 
suffices to have 1 and 

2'. There exists a regularly branched covering (with N as the group of 
regular branched covering transformations) on which the A>torus Tk acts 
(effectively) so that {tx')a = (${orx)(i))(x'a). 

Once again this condition is equivalent to defining a right action of Tk ° N 
on X'. We may form X'/N = X and still obtain a mapping /x: X -» W/N (W 
= X'/Tk), with ix~l(v(w)) being the quotient space of the toral orbit 
Tk(x') (= ju/ -1^)) by the induced action of the group Nw. There are really 
techniques sufficiently developed in [11] and [14] to systematically treat such 
fiberings. However, a great technical simplification occurs if we replace 2' by 
2". 2" = 2' with the added provisor that the toral action on X' be free. It is 
spaces X which satisfy 1 and 2" that we called Seifert fiber spaces in [14]. The 
theory in [14] is completely worked out for what we call locally injective Seifert 
fiber spaces. This means that (Tk,X,<j>) satisfies 1, 2 (= 2" and the regular 
covering transformations are unbranched) and 3. In particular, the theory 
becomes especially rich when one assumes that (W,N) is a properly discon­
tinuous group of holomorphic transformations. One obtains then what we called 
holomorphic Seifert fiber spaces. 

As it turns out, condition 3 is simply a technical convenience and has no 
bearing whatsoever in a development of a theory. So we may assume condition 
3 without any loss of generality. 

Condition 4, on the other hand, is quite a different matter. In light of 
conditions (2) and (3), 

Condition 4 is equivalent to the principal bundle (Tk,X') being a product 
bundle, (Tk,TkX W). 

It is precisely the failure of X' to be a product bundle that causes 
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complications in [14] and necessitates the use of sheaves for a complete 
analysis of the general setting of Seifert fiber spaces. (Also, in the complex 
analytic case condition 4 does not imply holomorphic triviality) 

To describe all the possible locally injective Seifert fiberings one need only 
replace the cohomology classes H^(N;Zk) by the cohomology classes 
H2(N;%k) where %k is a sheaf associated to (W9N) and <t>. The Bieberbach 
classes for locally injective actions are defined analogously as above. We refer 
the reader to [14] for details. 

5.7. EXAMPLES. We have exhaustively treated many examples in our earlier 
papers. It may be of value to indicate now some of the more important sources 
for actions of a desired type (W9N) and the Seifert fiber spaces associated to 
them 

(a) A good way to create (W,N) with W a contractible manifold is to begin 
with an aspherical manifold V and a finite group F acting on V. This action 
on V together with the covering transformations on the universal covering 
V = W defines a properly discontinuous action (W,N) of a group extension 
of7T1(F)byir, l -*77i(K)-*JV->F-»l . This construction, as mentioned 
before, is explained in [17, §2] and [14, 3.10]. For example, if F has a fixed 
point v E V, then N is isomorphic to a semidirect product 7TX(V,v) ° F. Each 
Bieberbach class a E H^(N;Zk) gives rise to an aspherical manifold M 
= (Tk X W)/N. The extension class determined by a is 1 -» Zk -» *nx(M) 
-» N -» 1, and the normal subgroup Zk is the image of the fundamental group 
of the covering space (Tk X W) of M. 

How do we know that there are any torsion free extensions for some kl Let 
1 -» Zk -> 7Tp -» F -» 1 be any torsion free extension of Zk by F. Such always 
exist for some k. Let the extension be denoted by a E Hg(F;Zk), for some 
0: F ^> GL (&,Z). If v\ N -> F denotes the epimorphism defining N then 
v*(a) = b E HQV{N\ Zk). This extension must be torsion free since TTF, TT^K), 
and Zk are torsion free. 

The argument can be modified and V replaced by any space Y. We still 
require that irF be torsion free but we do not need that TTJ((T^ X Y)/N) be 
torsion free. What is required is that for each extension 1 -> Zk -> ITN -> Â  
-» 1, fljv be torsion free. But under v\ N -» /% Ny -» F is a monomorphism 
where K ^ ) = ^ is the stabilizer of ƒ E 7 and ƒ projects onto y. Since we 
require irF in 1 -» Z* -» 7rF -> F -» 1 to be torsion free, mF induced from 
Fy C F is torsion free and consequently irN is also torsion free. Of course the 
extension 

1 -> rç(7* X f ) -> flïi((r* X f)/iV) -> iV ̂  1 

is still determined by the constructed Bieberbach class v*(a) E HQP(N; Zk). 
Other techniques for creating (W,N) in a controlled way can be found in 

[16] and [15]. 
We point out that the closed fiat manifolds are obtained by taking V to be a 

point. 
(b) TORAL ACTIONS. Let us observe that when </>: N -» GL (k, Z) is the trivial 

homomorphism, then to any Bieberbach class in B^ the associated Seifert 
fibering /A: X -> W/N is actually the orbit map of an induced toral action on X. 
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(Recall that the semidirect product Tk o N is Tk X N when and only when <f> is 
trivial.) We may therefore ask which type of toral actions give rise to which type 
of Seifert fiber ingsl 

Let (T7 , X) be an arbitrary toral action. We define for each stability group, 
Tx, a canonical homomorphism [11, §4] 

Vx'- ^ ^ ^ i ( ^ x ) / i m ( e v £ ) . 

This is done as follows. If t leaves x fixed, choose any path p(s) in T with 
p(0) = l,p(\) = '• Then p(s)(x) is a closed loop in X, based at x. In the 
quotient group irx(X9x)/im (ev*) it represents r}x(t). (Recall that im (ev£) for 
any y e X is equal to im (ev*) under any path isomorphism from irx(X9y) to 
TTX (X, x).) By choosing any base point x E I w e define 

7V = 7r1(X,x)/im(ev^). 

We say that the action (Tk
9X) is locally infective if the homomorphism t\x is a 

monomorphism, for each x G l . T o be locally injective, each stability group Tx 

must, of course, be finite. A more restrictive condition occurs where ev£; 
77| (7J ) -» 77ï (A", x) is a monomorphism, for ^orne x (and hence for a// x) in X. If 
this condition holds we say the action (T,X) is injective. Now for an arbitrary 
(Tk

9X) let JT denote the covering space associated with the central subgroup, 
image (ev£). This action (Tk,X) may be lifted to (Tk,X') so as to commute 
with the covering transformations TV (see [11, §4]). Hence N operates on the 
orbit space W = Tk\X' and clearly W/N may be identified with X/Tk 

= Tk\X'/N. Hence the orbit mapping /x: X -> X/Tk is a Seifert mapping in 
the most general sense (but with <f> trivial). The following answers the question 
posed above. See [11, 7.3], [12] and [14, 3.1]. 

THEOREM 7. The lifted action (Tk,X') is free (respectively, X' splits into 
Tk X W and the action is the product action) and hence the Seifert fibering ft is 
locally injective (respectively, injective) if and only if the (Tk,X) action is locally 
injective (respectively, injective). 

The reader may wish to formulate the appropriate analogous conditions to 
1, 2'" and 3 for characterizing the nonlocally injective actions. 

We have as an immediate corollary to Theorem 2 the 

PROPOSITION. If(Tk,M) is an effective action on an aspherical manifold then 
the action is injective. 

(c) Another example arising in algebraic geometry is the following. Suppose 
M is a rational homology manifold and also a homological Kàhler manifold. (For 
example M could be the quotient of a nonsingular (complex) algebraic variety 
by a finite group of automorphisms.) Suppose (Tk,M) is a continuous action 
with only finite isotropy subgroups. Then (Tk,M) is homologically injective [14, 
§§7, 8, 10, 12], [12], [6, Chapter XII, §6]. (That is, 

ev£: rç(7*, 1) -> 7TX(M,x) -> HX(M) 
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is a monomorphism) This is stronger than injective and is equivalent to each 
of the following: 

(i) a G H2(N; Zk) is of finite order, 
(ii) M can be written as Tk XF 7, that is, as an equivariant fiber bundle over 

Tk/F with fiber Y and finite structure group F Q Tk. 
Notice that this will tell us that any compact connected group of holomor-

phic automorphisms of a Kâhler manifold must decompose the manifold as a 
holomorphic fibering over a torus. See also [8]. 

(d) This example is (K/G, T) = (W,N) and was already mentioned in §2. A 
special case is worth mentioning here. If G is a connected nilpotent Lie group, 
then the center C of G is also a connected subgroup. Put the quotient group 
C\G = W. If T is a uniform discrete subgroup of G, then r fl Cis the center 
of T and on C/(T n C) X C\G = G/T n C, the group T/(r n C) acts as a 
group of covering transformations. On the quotient nil-manifold, G/T, the 
torus group C/(T DC) acts freely and injectively. We thank David Wigner 
for his help with this example. 

(e) The classical 3-dimensional fiberings of Seifert [39] are all locally 
injective Seifert fiberings except for those that occur on the lens spaces, 
nonorientable handle and RI§ % R^ . If we assume the fundamental group is 
infinite and not Z <> Z2 nor cyclic then they are all injective fiberings. 
However, our definition, even for injective Seifert fibering, is more general 
than Seifert's and we have, in dimension 3, injective Seifert fiberings which do 
not appear in Seifert's list. 

(f) If M is a closed manifold with nonpositive sectional curvature, then 
Lawson and Yau have shown [29] that the connected component of the group 
of isometries is a A>torus where k = rank of the center of ^(Af ). Moreover, 
it can be seen that this action is homologically injective. 

6. Computation of Out TT. Our goal, which is purely group theoretic, is the 
computation of the automorphism groups and outer automorphism groups of 
the class of groups of the form 

(6.1) 1 ->Zk ^TT-^N-* 1 

with 

(6.2) the subgroup i(Zk) a, characteristic subgroup of TT. 

The method of computation is related to our earlier procedures for the 
computation of Aut TT and Out TT where TT was of the form TT ^ G <> Z (see [17, 
§§4 and 5]). These earlier computations led to our results on aspherical 
manifolds with no periodic maps. We shall digress for a moment to mention 
two common situations under which assumption (6.2) holds. In 6.14 we 
explain how one bypasses this assumption. 

6.3. LEMMA. In the extension (6.1), the subgroup Zk is characteristic if either 
(a) the extension is a central extension and N is centerless, or 
(b) N has no nontrivial finitely generated normal abelian subgroups. 
PROOF OF (b). Let B C TT be a finitely generated, normal, abelian subgroup. 
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Theny(B) C N is trivial which implies that B C i(Zk). Thus, the image of Zk 

is the unique, maximal, finitely generated, normal, abelian, subgroup of TT. 
6.4. An example of a type of group satisfying condition (b) is any discrete 

subgroup N of a semisimple Lie group G, with trivial center, no compact 
factors and such that G/N has finite volume. Professor David Wigner has 
kindly shown us the following proof of this assertion. 

Let G be a semisimple Lie group without compact factors. Let AT be a 
discrete subgroup such that G/N has finite invariant measure. Let A be an 
abelian normal subgroup of N. If A acts on the Lie algebra g of G by 
conjugation (adjoint representation), then the elements of A must have a 
common eigenvector v. Let V be the linear span of all such common 
eigenvectors and let vx, . . . , vk be a basis of V consisting of such eigenvectors. 
Then v = ax vx + • • • + akvk. If a G A, let avi = favj. Then av 
= 2 <*iPiVi a n d av = \v = ^ (tyXf,-. Hence, atX = a,-/?,-, for all /, and conse­
quently at = 0 or X = /?,. Hence i; is a linear combination of those t//s on 
which each a G ,4 has the same eigenvalues as v. Let V = Jf 0 V2@ • • • 0 Vt 

be a decomposition of V into eigenspaces on which each element of A acts by 
scalar multiplication. Each Vt is generated by those vfs on which the elements 
of A act by multiplication by the same scalars. 

Since A is normal in N, N permutes the Pfs and some subgroup N' of finite 
index in N stabilizes all Vt. Applying the density theorem of Borel to N' (which 
has finite measure since it is of finite index in N), N' has property S by [36, 
Lemma 5.4, p. 79]. Moreover, the linear span of the matrices representing N' 
is equal to the linear span of Ad G in g. Hence each V{ is an ideal of g and A 
acts by scalar multiplication on this ideal. Therefore V has a G invariant 
complement W since G is semisimple. If W # 0 then A has a simultaneous 
eigenvector in W which is a contradiction. Hence W = 0 and g = V. 

Now A acts by scalar multiplication on the ideals Vt which span g. Hence 
the adjoint action of A commutes with the adjoint action of G and A C center 
of G, since G/center G is centerless. 

6.5. To formulate the main result of this section we fix a group N> and a 
homomorphism </>: N -> Aut (Zk) = GL (k, Z). To any extension of the form 
(6.1) is associated a cohomology class a G H£(N; Zk). Since GL (A:,Z) is the 
automorphism group of Zk, then by the action of GL (k, Z) on the coefficient 
group, we may assign to each matrix g G GL (fc,Z) an isomorphism g*: 
H^(N;Zk) -> Hh -i(N;Zk). If g<t> = <J>g then g* is an automorphism of 
/fy2(JV; Zk), Let If (a) C GL (k9Z) be the subgroup of all g G GL (k9Z) so 
that 

<t>g = g</> and &„(«) = a. 

Let r0^(a) be the subgroup of GL(A:,Z) whose elements are of the form 
</>(£) for )8 G 2(JV), the center of N. We shall see that Y$(a) is a normal 
subgroup of Iî*(a). Define T*{a) to be the quotient T$(a)/T#(a). 

We also know to each $ G Aut N there is associated an isomorphism 

<I>*:H*(N;Zk)^Hfa(N;Zk). 

We </ç/zne a subgroup Aut (a) C Aut N by $ G Aut (a) (ƒ a«rf Ö«/J> (f there is 
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g E GL (k,Z) with g*{a) = $*(#). In order to make sense we must have the 
compatibility relation on the operators: 

g<j>g~l = </> o $ or equivalently (<ƒ> o 4>)g = g<j>. 

(This just says that g: Zk -> Z^ must be an TV-module isomorphism where the 
action of N on the image group is given by <j> <> <ï>.) Since $*og # = g* o <£* 9 

Aut (a) is a subgroup of Aut N. (For, if 

g2îK(a) = $£(a), a ^ a - * ° $2> 
then 

(a ° a)*(*)(& ° a) *(«) = &(&(*(*)& Ha * («)))) 
a E Z*, 

and 

(a ° a)*(*) = (a)* ° **(«) = *f (&„(*)) 

- ( * f ° *?)(«)-(*2°*i )%).) 

Since TT -> iV is an epimorphism it follows that Inn JV, the inner automor­
phisms of N, is a subgroup of Aut (a). Hence we define Out (a) 
= Aut (a)/Inn (N) as a subgroup of Out (JV). 

6.6. THEOREM 8. There are two short exact sequences: 

1 -> # -» Out (77) -> Out (a) -> 1, 

1 -> F^J(iV;Zk)->K-+ T*(a) -* 1, 

w/iere H^iN; Zk) is a well-defined quotient group of H^(N; Zk). Furthermore, if 
either N is center less or if a = 0, É^ is the full group H^(N; Zk). 

PROOF. TO aid in following the proof, which is somewhat complicated, we 
shall show there are two commutative diagrams: 

1 

r 
r -> K 

-> Inn (7r) 

y 

-> Aut(7T) " 

! 
"• Out(7T)-

y 

1 

1 

• Inn(iV) 

->Aut(ö) -

1 
• Out(a)-

I 
1 

- • 1 

- M 

- • 1 
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0 1 1 

I I 1 
N:Zk) >Ka Tg(a) 1 • BlJN; Zk) • K0 • r g ( « ) • 1 

I I I 
1 • HomJN; Zk) — K, T » • 1 

I I i 
1 *Hl(N; Z fc) • K • r * ( a ) Hi 

Y 4" y 

0 1 1 

where all horizontal rows and vertical columns are exact. The bottom rows of 
each diagram will yield the theorem. 

Let/ : N X N -> Zk be a normalized cocycle representing a, then 

ir = ZkXN with product (n9a)(m,fi) = (« + <ƒ>(«)"* +f(a9f}),afl). 

Recall that Z* is assumed to be a characteristic subgroup. Thus, if a E Aut (TT) 
is an automorphism of TT, then we can write a(n,e) = (g(w),e) for some 
g E GL(&,Z). Also, there exists a unique $ E Aut (Af) and a unique 
function X: N -> Zk so that <x(0,a) = (A(a), $(«)). Since (n,a) = («,e)(0,a) 
we have 

a(n,<x) = (g(n),e)(X(a),*(a)) = (*(«) + \(a), *(a)). 

Since a is an automorphism, 

(X(a),*(a))(XG8),*G8)) = (X(a) + *($(«)) (A(j6)) 

+ ƒ(*(«), *G8)),*(a)*G8)) 

= (o(0,a))(o(0,/8)) = o(J(a,fi),afi) 

= (g(f(a,/l)) + \(a/l)MocM/l)). 

Hence we obtain an identity 

(6.7) g(f(a, /?)) - ƒ($(«), *(/?)) = X(a) - \(ap) + W)MP)), 

from which we may conclude that g* (a) = $* (a), as an element 

£ £ i ( t f ; Z * ) . 

Thus an automorphism yields a triple (g, X, $) for which (6.7) holds. 
Conversely, given any triple (g,X, <£) for which g^g^ 1 = <£ o $ and (6.7) 

holds define an automorphism a E Aut (77-) by 

(/i,a)-*(g(/i) + A(a),*(a)). 

Recall Aut (a) C Aut (N) are those automorphisms $ of N so that there 



60 P. E. CONNER AND FRANK RAYMOND 

exists g E GL (k9Z) with g*(a) = $*(#). Since this condition implies that 
(6.7) holds, for some choice A: N -* Zk

9 we have a short exact sequence 
1 -> Kx -» Aut (AT) -> Aut (a) -* 1. Note that Inn (N) C Aut (a). Now let K0 

be the subgroup of Inn m which maps onto the trivial element in Aut (a). This 
subgroup is normal in Kh and in Inn IT. Let K = #i/#o . Then we get the short 
exact sequence 

1 -> K -> Out (77) -* Out (a) -> 1, 

where Out (a) = Aut (a)/Inn (N). 
The group J^ may be regarded as the group of all pairs (g,A, id) = (g,A) 

where X: N -* Zk satisfies 

g( ƒ (<*,/*)) - Z(«,j8) - A(a) - AM) + <t>(a)X(/3). 

The product rule is 

Recall that r^(a) = {g|g<|> = <|>g and g* (a) = a}. Therefore, there exists 
A: N -» Zk so that (6.7) holds with $ = id. Consequently, there is an 
automorphism (g,Aid) = (g,A), hence an epimorphism Kx -» T^(a). The 
kernel is the subgroup of pairs (ƒ, A). For such a pair 

0 = X(a) - A(aj3) + *(a)X(j8). 

That is, A E Hom^ (N9Z
k)9 the group of crossed homomorphisms. Hence we 

have shown that the sequence 1 -» Hom^ (TV, Z*) -» ^ -» T^(a) -» 1 w exacf. 
6.8. INNER AUTOMORPHISMS OF 77. We shall characterize those automor­

phisms in K0. To be in K0 the automorphism (g,A) must be an inner 
automorphism of 77. That is (g,A)(«,a) = (g(«) + A(a),a) must be equal to 
(m9f})((n9<x)(m9fiy

l) for all (n9a) and some (m,/?). Now 

(m,/?)"1 « H(rKP) - +G8-1)(m),r1), 

so for an arbitrary inner automorphism we have 

(m,/?)(« + 4(«)H(rl,fi) ~ tf^Xm)) + f(a,irl)9airl) 

- (m + 4<iS>[#t + 4(*)H(P-I,p) - *(jB-1)(m)) + /(a, /T !)] 

+/(i8,«r1),i8ar1). 

If we put a = e, then we have 

(m + <f>(/?)(«) - 4(fi)f(irl,fi) - « +f(fi,prl),e). 

But from the general transitivity relation [32, p. I l l , (4.5)], 

<t>(x)f(y9z) +f(x9yz) = f(x9y) + f(xy9z)9 

we have that -<t>(P)f(P~\P) + f(P,P~l) = 0- Consequently, for conjuga­
tion by (m, /?), g = <J>(j8), and 4> is conjugation by /?. 

Let us now consider («, a) = (0, a). We obtain 
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(X(«),«(a)) = (m + <*>(/?«)(-ƒ (/r1,/?) - <K/r')M) 
+<t>(fi)f(a,rl) +/(ft a/r'),/?«/?-') 

= (m - ^ a / r ^ M + KMHirKfi) 

This comes from 

^ ) / ( « , r ' ) = M « ) + ƒ(/?«,/?:') -/(/8,aj8-'). 

We may collect terms further and obtain 

ƒ« summary, if (g,A, <É>), in Inn (77), represents conjugation by (w,/?), then 
(g,X(a),$) w 

(<K/?),m - 4(fi*irl)(m) +f(fi,a) -f{Mr\fi\papTXY 

In order for (g,A,$) to be in AT0, then /to/?-1 — a, for all a, hence 
/? G 2(#). Then \(a) simplifies to 

\{a) = m- <j>(a)(m) + ƒ(&«) -ƒ(«,/?)• 

Recall that r0*(a) = {g|g G GL (k,Z) so that g = </>(£), for some £ 
G Z(N)}. Certainly under Kx -» IJ*(a), Ü:0 is carried into r<f (a). We claim the 
image is also IJf (a). If we choose ƒ? G 2(7V) arbitrarily, then conjugation by 
(m,/?), for some m G Z*, yields (<i>(P),\p, id), an element in K0, whose image 
in r<f (a) is <K/?). Thus, the image of K0 is r0*(a). 

Let us check whether or not Â  is a crossed homomorphism. 

Xpioc) - \p(ay) + <K«)\S(Y) = / (f t a) - / (a , /?) -/(fray) + f(ay,fi) 

+<|>(a)/(fty)-<*>(«)ƒ(y,0). 

Since, 

¥.a)My) -ƒ(«,/?)=ƒ («ft y) - /(«>M 
and 

/(ay,/?) - <K*)f(y,P) = /(«,J0Y) -/(«,?), 
we have the expression equal to 

ƒ (ft a) + ƒ (aft y) - ƒ (a, fa) - ƒ (ft ay) + ƒ (a, fty) - ƒ (a, y) 

= ƒ (ft a) + (/(ft*, y) - ƒ (ft ay)) - ƒ (a, y) 

- ƒ (ft a) + (*(/}) ƒ (a, y) - ƒ (ft a)) - ƒ (a, y) 

= *G8)/(a,y) - / ( a , y ) = ^ ( a ) - X/8(ay) + <f>(«)M?)-

Now X̂g will be a crossed homomorphism if 
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(a) </>(/?) is trivial for /? G %{N) or, more generally, 
(b) <tiP)f(oL9y)-f(cL,y) = 0, for all a,y GN. 
Let us point out that if <J> is trivial on X(N) then every element of K0 is a 

crossed homomorphism and I<f (a) is trivial. If, on the other hand, we were to 
assume ƒ is trivial, then the elements of K0 are pairs (g,A), where g 
= </>(/?) and \(a) = m - 4>(a)m, a principal crossed homomorphism. K0 then 
maps onto </>(Z(iV)) with kernel the set of principal crossed homomorphisms 
Bl(N;Zk). 

In general, K0 is the group of inner automorphisms of TT which induce the 
identity on N. K0 also maps onto IJf = <f>(%(N)) with kernel the group of inner 
automorphisms of TT which induce the identity on both Zk and N. As such this 
kernel, 'B<^{N\Zk\ consists of the crossed homomorphisms corresponding to 
conjugation by elements (m,/3) with /? G %{N) and </>(/?) trivial. B\{N\Zk) 
contains all principal crossed homomorphisms, B^(N;Zk), corresponding to 
conjugation by all elements of the form (m,e). This group B^(N;Zk) is 
naturally isomorphic to Zk/Zk Pi %{TT). Now Kx is the group of automor­
phisms of IT which induce the trivial automorphism on N. It has a normal 
subgroup (the kernel of Kx -> Y^{a)) Horn ,̂ (N; Zk), the group of crossed 
homomorphisms, which as automorphisms induce the identity on Zk and on 
N. We define 

Hl(N; Zk) = Hom^ (N; Zk)/B\{N; Zk). 

Of course we have the following exact sequence: 

0 -> Bl(N; Zk)/Bl(N; Zk) -+ H*(N; Zk) -> fl}(AT; Zk) -» 0. 

H is to be interpreted as the group of outer automorphisms of m which induces 
both the identity on Zk and on N. It is a normal subgroup of K9 those outer 
automorphisms of IT which induce the identity on N. We may interpret 
Hl(N;Zk)zs the group of automorphisms of TT which induce the identity on 
Zk and N modulo those inner automorphisms arising from conjugation by 
elements of Zk. 

We have obtained the commutative diagrams mentioned just after the 
statement of the theorems and have checked vertical exactness and horizontal 
exactness everywhere except for the last line of the second diagram. This last 
sequence is exact by either diagram chasing or direct examination. This 
completes the proof of Theorem 8. 

6.9. COMPUTATIONS AND EXAMPLES. Let us try to get a feeling for the two 
exact sequences of the theorem. We begin with 

r*(a) = (centralizer of <t>(N)) n (g|g*(a) = a}/<t>(%(N)). 

(i) a = 0. Then (6.1) is congruent to a semidirect product and ƒ can be taken 
to be 0. Now any pair (g, 0) for which g<j> = <j> ° 4>g implies that g* (a) 
= $*(a) = 0. Hence one can form the triple (g,$,X) for some function X 
satisfying (6.7) and obtain an automorphism of TT. Therefore, 

r*(a) = centralizer of +(N) in GL (k,Z)/<t>(%(N)). 

Similarly, 
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Aut (a) = {<D|there exists g so that g<j>g l = <j> o $} 

and, 

Out (a) = Aut (a)/Inn (N). 

Note also, since ƒ is trivial, %l = 5 | and H*(N; Zk) = tf1^; Z*). 
(ii) <t>(%(N)) = /. Then T$(a)_ = 0 and IJ*(O) = r*(a),and K0 = Bj . If, in 

addition, TV is centerless, then B^ = B\ and Hx = Hx. 
(iii) TV is abelian. Then Inn (N) = 0, Aut (a) = Out (a), and r0* (a) 

= tftf). 
(iv) N is Z. This is an important example. We may obtain the results of [17, 

§6] and the results for the fundamental groups of the manifolds in [17, §8.2]. 
First we point out that a = 0 = H£(Z; Zk), and consequently we may take 
ƒ = 0, and ir = Zk °Q Z. Also we may use the results of (i) and (iii). 

The automorphism <J> is completely determined by its value 

<J>(1) E GL(k,Z). 

Now, Zk is characteristic in TT if it is the kernel of TT -» TT/[TT, TT] ® Q. It is shown 
in [17, 4.1] that this is actually the case ifdet(I - </>(!)) ^ 0. 

Actually when we are dealing with a = 0, that is TT — Zk <> AT, one can show 
in a similar manner that Zk is characteristic if 

/ # ( # ; # !#* ; (» ) ^ J#(tf; Q*) = 0. 

This would be implied if there exists some a E N so that det(7 - </>(«)) 7e 0. 
A sequence is that HX(TT\ Q) (trivial action of TT on Q) is isomorphic to 
HX{N;Q). 

Now Aut (a) = Out (a) C Aut (Z) =̂  Z2, which is, in terms of the compat­
ibility relations, 

gt f l )*" 1 = </>(l) or g<S>(l)g-1 = OKI))-1. 

Consequently, we have the /WÖ exacf sequences: 

o -> ̂ ( z ; z*) -> * ^c(cf>(i))Mz) -» l, 

1 -» Ü: -» Out (TT) -> Out (a) = {0} or Z2 -> 1. 

Here C(<j>(l)) denotes the centralizer of <̂ (1) in GL (A:,Z). (Compare with [17, 
4.5 and 4.6]. It remains to check the asserted splitting. Now an element in Kx 

can be represented by (g,X, id). For each g E T^(a), there is a X so that 
(g,X, id) E Kx. Now if a = 0 and we take ƒ = 0, then X is a crossed 
homomorphism. Consequently, g -» (g,0, id) is a splitting homomorphism. Note 
that only a = 0 is used for this argument and not that N = Z. 

The reader might wish to examine some very specific computations for 
Out (Zk o Z). Many computations can be found in [17, §6] and [18, §2] where 
the chief interest lay in getting Torsion (Out (TT)) as small as possible and TT 
centerless. 

In computing Out TT from Theorem 8 the difficult parts are 
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Out (a) and ^(a). For each a G N, <t>(a) generates a cyclic group in 
GL (k, Z), and T^(a) is the intersection of all the centralizers g of </>(/}), for all 
/î e N, and such that g# (a) = a. We shall sketch the method employed in 
[17], [18] and [13] which enables one to closely estimate Out IT for m = Zk o Z. 

Let <j>(l) G GL (fc,Z), and f(x) = det(/x - <J>(1)) be its characteristic poly­
nomial with Aj, . . . , Xk its roots. 

6.11. COROLLARY [18]. If 

(1) Xj, . . . , Xk are all distinct and ¥* ± 1, 
(2)/(l) # 0, 
(3)f(x) # x*/(lA)//(0), 

out 77 =* (zV(/ - *(i))z*) o (c(«(i))Mz)) 

w/im? H^(Z,Zk) c~ (Zk/(I - <j>(l))Zk) is a finite abelian group with order 
equal to |/(1)|, and C(<j>(l))/(<j>(Z)) is a finitely generated abelian group. 
Furthermore, if 

(4) no Aj, . . . , Xk is a complex root of unity, then, m = Zk o Z is centerless. 
Moreover, if 
(5)f(x) is irreducible over Q, then, C(<|>(1)) is a subgroup ofZr X F, where r is 

one less than the sum of the real zeros and one half the complex zeros off(x) and 
F is a finite group (F = ±1, if k is odd orf(0) < 0), and if 

(6)f(±xn) is irreducible, all n > 1, then, </>(Z) is a direct summandof C(<t>(\)). 

PROOF. It is well known that / ( l ) = det(/ - <J>(1)). If / ( l ) # 0, Z* is 
characterized by (iv) and (I - <j>(l)): Zk -^ Zk is a monomorphism with 
cokernel H$(Z; Zk), a finite group whose order is | ƒ(1)|. 

Now Aut (a) C Z2 and is actually 0 because there is no matrix g 
G GL (k,Z) so that (^(l))"1 = g^(l)g_1. For, the right-hand side of (3) is 
the characteristic polynomial of (<J>(1))~ a n d the characteristic polynomial of 
g<t>g~l is still ƒ (x). So no possible solutions exist. 

It only remains to compute T^(a). We need to compute C(̂ >(1)) and 
understand how <j>(Z) imbeds in C(<J>(1)). From linear algebra we know, since 
all eigenvalues are distinct, that all rational kx k matrices which commute 
with </>(l) are the polynomials in <j>(l) with rational coefficients. The intersec­
tion with the matrices in GL (k,Z) gives a finitely generated abelian group. 

Condition 5 also tells us that the commuting rational matrices may be 
identified with the finite extension field Q(A), for any root Xot f(x). C(</>(1)) 
then becomes GL (k, Z) n Q(A) and is a subgroup of the group of units of the 
algebraic integers in Q(A). This group is isomorphic, by Dirichlet's unit 
theorem, to Zr 0 F, where Fare the roots of unity in Q(A). Condition 6 implies 
that there is no matrix g so that <̂ (1) = ±gn, for all n > 1, and so <j>(l) would 
have to be a direct summand of C(<{>(1)). 

In order that <j>(l) has finite order the eigenvalues would all have to be roots 
of unity. It is shown in [17, 4.7] by a straightforward computation that the 
center of m is isomorphic to Z/nZ if </>(l) has order n and is trivial if the order 
of </>(l) is infinite provided that ƒ (1) ¥= 0. This completes the sketch. Further 
details can be found in [18, §2]. 
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6.12. We shall now sketch a proof of the first part of Theorem 3 of §3. Notice 
that if f(x) satisfies all 6 conditions, / ( l ) = ±1 , and F = ±1 (F = ±1 is 
guaranteed if /(O) < 0 or if k is odd or more generally if there are no roots of 
unity in Q(A) other than ± 1), then 

Out (TT) ^ Z/2Z 0 Zs, some s < k, 

and 77 is centerless. That such polynomials exist is verified in [18, §2]. The 
aspherical manifolds M that may be constructed from the polynomials fiber 
over the circle with fiber a /c-torus Tk (see [18, §8]). Consequently, by Theorem 
2(iii), the only finite subgroups of %(M) are isomorphic to Z/2Z and we 
obtain the first part of Theorem 3. 

6.13. CENTRAL EXTENSIONS. An important special case of Theorem 8 occurs 
when we assume that <f> is trivial. Then the extension (6.1) is a central extension 
of Zk by TV. Automatically we have the compatibility condition (<f> <> $)g = g<j> 
since <f> is trivial. Furthermore, T$(a) = 0, and 

Ifta) = THa) 
= [g\g E GL (k,Z) with g*(a) = a} = T{a). 

Also, KQ = Bx and Bx(N;Zk) = 0. Thus Wx(N;Zk) = Hom (N,Zk)/K0. 
Moreover, if N is centerless, then Inn (N ) = Inn (if) = JV and consequently 
K0 = 0. 

COROLLARY 1. If N/[N,N] = HX{N;Z) is a torsion group then there are the 
exact sequences: 

1 -» T(a) -» Aut (IT) -> Aut (a) -» 1, 

1 -» T(a) -» Out (IT) -* Out (a) -» 1. 

Note simply that under the hypothesis, Horn (N,Zk) is trivial. 

COROLLARY 2. If k = 1, anrf 2a # 0, r/ie« f/iere are short exact sequences: 

1 -» ^(AT; Z) -> Aut («•) -> Aut (a) -> 1, 

1 -» F 1 (AT; Z) -» Out (w) -> Out (a) -» 1. 

PROOF. Since GL (1, Z) =* Z/2Z, and la ¥= 0, it follows that T^(a) is trivial 
and Kx = Horn (N,Z) = HX(N,Z). Also observe that if <J> is not trivial when 
k = 1, a similar result holds if we replace Hl(N; Z) by Hom^ (N; Z). 

We have described earlier how each automorphism of Aut m can be written 
as a triple (g, X, $) with g, À, and $ satisfying 6.7. It is easily seen that the 
group multiplication (for <J> not necessarily trivial) is given by 

(&>\i>*2)(a>*i>*i) = (& ° &->&*i + ^2$ i>*2 ° *i)« 

If we now choose IT = Zk X iV, where iV is centerless (hence </> is trivial), we see 
that Aut 77 and Out TT have the following very nice form. 

COROLLARY 3. For ir = Zk X N, we have: 
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1 -* Horn (N,Zk) -> Aut TT -> GL (k9Z) X Aut N -* 1, 

1 -> Horn (N,Zk) -* Out TT -» GL (Jfc,Z) X Out TV -> 1. 

ƒ# /ac/, /Ae groups Aut (TT) a«rf Out (77) are iterated semidirect products. 

Aut TT = (Horn (#,Z*) o GL (*,Z)) o Aut N, 

Out TT = (Hom (N9Z
k) o GL (/c,Z)) o Out N. 

PROOF. By first choosing our representative cocycle ƒ to be trivial we may 
choose any g E GL (k,Z), X G Hom (N,Zk), <E> E Aut N to represent an 
automorphism (g,X,<I>). Since N is centerless i?° = T0 = 0, and Horn (N,Zk) 
= Hl(N;Zk) = Hl(N;Zk). An examination of the group multiplication 
yields the semidirect product structure. 

This corollary corrects an imprecise and overly enthusiastic remark [17, 
4.13] concerning the structure of Aut TT and Out IT. This remark was used in 
[15, §11] to extend constructions made in the earlier part of [15] for manifolds 
of dimensions 3 and 4 to constructions in all dimensions greater than 2. It is 
shown there that for any n > 2, there exist (closed) aspherical manifolds, 
Mx

n and Af2", so that Mx
n X Sl is diffeomorphic to M£ X Sl but ^(Mf) fails to 

be isomorphic to TT1(M2I). The splitting of Out TT*=5 Out N, is the only portion 
of the imprecise remark used in verifying the nonisomorphism of 
TT\{MX) and 77i(M2). Since we have just demonstrated this splitting, our claims, 
in [15, §11], still remain valid. 

6.14. Zk
 NOT CHARACTERISTIC. As a final remark we mention that assump­

tion (6.2) that Zk be a characteristic subgroup of IT is used only in showing that 
every automorphism a of TT induces an automorphism g of Zk and $ of N. If 
Zk is only assumed to be normal, then replace Aut (TT) by 

Aut (TT; Zk) = {a\a E Aut TT and a induces 

an automorphism of Zk). 

Notice that Inn (TT) = Inn (TT; Zk), and we may define Out (TT; Zk) as the 
quotient Aut (TT; Z*)/Inn Or). To calculate Aut (TT; Zk) and Out (TT; Zk) we do 
not need to change any of the other definitions to obtain the analogous 
formulae of Theorem 6. In either case it is interesting to note that 
Hom^ (N9 Z

k) are those automorphisms of TT which induce the identity on 
both Zk and N and B^(N,Zk) is identifiable with those inner automorphisms 
of 77- arising from conjugating by elements of Zk. The cohomology group 
HQ (N; Zk) and its quotient flj (N; Zk) are particularly vulnerable to geometric 
realization as we shall see in §7. 

7. Fiber preserving homeomorphisms and geometrically realizing the subgroup 
K of Out TT. 

7.1. In §6 we obtained formulae for Out (77; Zk) in terms of automorphisms 
of Zk and automorphisms of N. There is for any space X a natural map 
^ : &(X) -» Out (TT). We will show that injective Seifert fiberings (Tk,X,4>) 
will furnish a class of spaces for which the composition ^ o /: %(X) 
-» Out (TTI(X)) is always onto K C Out (TTI(X)\ where K is the kernel of the 
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epimorphism Out (TT; Zk) -» Out (a; Zk) as defined in the preceding section. 
Furthermore this realization of outer automorphisms of the fundamental 
group by self-homeomorphisms of X will have the striking property that they 
move each point only along its fiber. 

Let (Tk
9X9<j>) be an injective Seifert fiber space in the sense of §5. Let us 

choose a base point x0 E X. Passing through *0 is an immersion of the torus 
ev*o. Tk _+ Tk/NWQ where ix(x0) = v(w0)9 and v is the map X'/Tk = W 
-» W/N = \i{X). The "evaluation" monomorphism ev*°: ^ ( r* ) -> TTX(X9X0) 

has cokernel N. The covering space X' of X9 corresponding to the image of 
ev*°, is a principal toral bundle over X'/Tk = W, On X' we have the left-right 
action satisfying 

(txf)a = Wa-l)(t))(x'a), 

for all x' E X'9t E Tk
9a G N. Furthermore, this bundle is trivial and X' 

splits into Tk X W. 
Let us be explicit and choose a cross-section W -> X' to write as Tk X W. 

Choose x'0 = (e9w0)9 with v'(x'0) — -*o> a s base points and represent x' E X' 
by(f,w) e TkX W. Then 

(/V)a = {t't>w)a = (^(«""^(/'OmCwa,^"1),^^ 

= •(a-^OWa-^W^a-1),^) = <*>(<*"'HOW-
Here m is a function N X W -+ Tk which, when regarded as a function from 
N into the Z - TV module MAPS (W, Tk), satisfies the 1-cocycle condition. 
The function is obtained by considering (e,w)a = (t,wa) for some t9 which 
depends upon w and a. The 1-cocycle condition 

m(w,afi) = m(w,0L)<t>(a)(m(wa,(i)) 

is obtained from the fact that /x' is 7V-equivariant and the (X',N) action is 
compatible with the toral action. 

Let us represent the image of a point x' = (t9 w) in X under the orbit map 
v' by v'{t, w) = if, w). Thus <ƒ, w) can be regarded as the equivalence class of 
pairs (t, w) under the relation 

<*,H>> = <(/,w)a> = ^ ( a " 1 ) ^ ^ » " 1 ) , ^ } . 

See [17, §4] and [11, §8] for further details. 
We want to define a group of homeomorphisms on X' which will induce a 

group of homeomorphisms on X. In order to motivate this definition we shall 
consider the central case first. This is more natural and also has the desirable 
feature that it can be defined on X directly. 

7.2. THE CENTRAL CASE. For the present, we assume that <£ is trivial, and 
consequently, the Seifert fiber space (Tk,X9$) has a toral action (Tk

9X) and 
the fiber map JU, is simply the orbit map. Let G(Tk

9X) be the set of pairs 
(g, ƒƒ), g E GL (fc,Z) = Aut (7*), H E %(X) so that H(tx) = g(t)H(x)9 

for all x E X9t E Tk. 
Observe that this set forms a group under the multiplication (g9H)(gl9Hx) 

= (ggx,HHX). Furthermore, this group can be considered a subgroup of %(X) 
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since (g,H) and (gl,H), as elements of G(Tk
9X)9 imply g = g{. For, 

g(t)H(x) = H{tx) = gx(t)H(x) for all t S Tk
9x E X implies that g = g{ 

provided that the toral action X is effective (which we may assume without 
loss of any generality). 

Choose any path r: (7,0,1) -» (X,x0,H(x0)). Then / / induces an automor­
phism H# of irl(X9x0) via the path r. The automorphism depends upon the 
choice T and another choice changes H* by the usual inner automorphism of 
TT{(X9X0). We now wish to lift (g,H) to (Tk

9X') so that the lifted pair (g9h) 
satisfies 

h(x'a) = h{x')H*(a) and h{tx') = g(t)h(x'). 

Recall that ev£: ^ ( r* , 1) -> ^(A^x) does not depend upon x. That is, if 
a G flj(:r*, 1) then ev£° (a) = y"1 ev£ (a)y9 for a«y choice y: (7,0,1) -> (*, 
x09x). Therefore, we see that H*(a) = g(<x). If we consider the mapping 
H o v'\ (Xf) -> X9 the image fa(X',x'0)) in irx(X9H(x0)) is precisely 
im (ev£ g(pi(Tk

91))) and there is a mapping h: (X'9x'0) -» (A'',/) covering //. 
Now *>'(/*('*')) = H(v'{tx')) = H(tx) = g(t)H(x). Since •(*(/)*(*')) 
= g(f>'(*(*)) = g{t)H(x)9 we have that A(ta') and g(t)h(x') both cover 
ƒƒ (ta). Uniqueness of lifting with specified base points and the connectedness 
of Tk yields the formula 

g{i)h(x') = h{tx'). 

The automorphism H*9 which reduces to g on im(ev*°), induces an 
automorphism, also to be denoted by //*, on N = fl/im(ev*°) a n ^ we assert 
h(x'a) = h(x')H*(a)9 for all a G N. Since /*(.*') -> A(.x'a) is a covering trans­
formation it is only necessary to check this at x' = x'09 and there it is 
straightforward. We may also inquire what other possible lifts are there? The 
different lifts are in 1-1 correspondence with the elements of N9 or equivalently 
with (v')~l(H(x0)). In fact, if we let hT denote the lift of H corresponding to 
the path class of T, and Hi the induced automorphisms on m and N9 then 

where y is the class of the loop (T1)~1T. Thus 

W • a) « hHx')H2(a) = hHx')(yH*(a)y-l)9 

and H*(a) is determined up to inner automorphisms of 
Vim (ev£°) = N. 

Now on X'/Tk = W9 there is induced a homeomorphism h: W-* Wwith 
the property h(wa) = h(w)H*(a)9 for all w G I f anda 6iV, This says that 
the action of N induced by the automorphism H* is equivalent (equivariantly 
homeomorphic) to the original action of N on W. 

7.3. THE GENERAL CASE: THE GROUP OF FIBER PRESERVING HOMEOMORPHISMS. 
With the foregoing in mind we now wish to examine the general case where </> 
is not necessarily trivial. Instead of beginning with X9 we begin with (X'9x'0). 
We consider now pairs (g9h)9 g G GL (k9Z) = Aut (Tk)9 h: X' -* X' = 
Tk X W a homeomorphism satisfying: 

l. H&) - g(t)h(xf)9 
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2. h(x'a) = h(x') • H%(a) for some automorphism if* of N. 
We need to explain the automorphism H* of N. Since h(tx') = g{t)h(x'\ 

there is induced on W = X ' / r * a homeomorphism h, defined by h(p!{x')) 
= \i'{h{x')). Condition 2 asserts that h induces a homeomorphism / / on X. 
The two conditions together with (tx')a = ^(of1 )(/)(*' • a) imply 

3.^(a-1)W) = ^*(«-1))gW. 
The sets of pairs (g, /*) satisfying conditions 1 and 2 form a group under the 

law of composition (g,h)(gl,hl) = (g <> gx,h o fy). To check the group law 
cbndition 3 is useful. Once again, given pairs (g, h) and (gj, /i), g = gx and this 
group can be regarded as a subgroup of %(X'). We denote this group by 

image in %(X) by G(Tk,X,$). We call the latter the group 
of fiber preserving homeomorphisms of the Seifert fibering (Tk

9X,^>). 
Let us also use v' to denote the projection G(Tk,X'<$>) -> G(Tk,X,<f>) under 

the homomorphism (g,h) -> (g,H). We wish to study (V(£>^))*: ^(A^xo) 
-> TTJ (A^ if (;c0)). Choose a path r': (7,0,1) -> (A^x^ *(*())) and let T = P'(T'). 

The homeomorphism / / induces an automorphism H* of TTJ (X x0) via the path 
T. On the image v* fa (Tk, 1) « Z^, f̂  is invariant and is given by g from (1). 
Therefore on N there is induced an automorphism which we shall also denote 
by ^ . If we choose a different path r\ but with the same endpoints, then H* 
via the new path T\ is altered by an inner automorphism obtained by 
conjugating by r{~1 r. Thus H* restricted to Zk is unchanged, and H* induced 
on N is also unchanged. In any case, the unique lifting of H to X' so that the 
image of x'0 is h{x'0) is, of course, h. Now h(x' • a) = h(x') • H*(a) means that 
h(x') -> h(x' • a) is a covering transformation and so is determined by what it 
does on the base point x'0. Let o: (7,0,1) -> (X,x0,x0) represent a class 
a G ^ ( A ^ X O V ^ T T ^ X ' J . X O ' ) ) = TV. To find h(x'0a) we just need to consider 
the lift of the path H(o) at H(x0) to the endpoint of T'. This is the lift of the 
path H(o) • r. To find h(x'0) • if* (a) this is the lift of the path T(T_ 1 H{O)T) 

which of course has the same endpoint. Thus h(x'0) • ̂ ( a ) = h(xq)H*(a) 
= / i (4a) . That is if* on JV is p£ecisely H* . Thus the pair (g, A) e G(r*, X\ <f>) 
determines an automorphism H* of m (modulo conjugation by elements in Zk) 
and restricts to g on Zk and determines a unique H* G Aut (JV). We shall now 
drop the bar over the H. On the other hand, given H G G(Tk,X,<j>), H* 
induces automorphisms on Zk and N which are uniquely determined up to 
conjugation by elements of IT. An explicit formula will be obtained in the 
lemma of 7.6. In any case if* determines a unique element of Out m. 

Our Seifert fibering /x with the extension 

1 -> *i(X',xb) -> rç(*,x0) -> # -» 1 

is given by its Bieberbach class a E H£(N; Zk). It will be convenient to have 
an explicit formula stating that 

7.4. LEMMA. H*(a) = g*{a). 

That is, if* in Aut (TV) determines uniquely an element in Out (a) 
Q Out(iV). We simplify notation by denoting the isomorphism on cohomol-
ogy by H* instead of (i/*)*. In order to show that H*(a) = g*(a) we recall 
[17 ,§§3 ,4]and[ l l ,§8] tha t 

5: HUN; MAPS (W9 T
k)) s H*(N; Zk) 
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and corresponding to a there is a map m: WX N -> Tk satisfying 

m(w,a)<l>((x)m(wa,($) = m(w,af$) 

so that (Tk,X\N) can be represented up to Tk - N equivalence by 

(t,w)a = (<f>(a~l(t)m(wa,a~l),wa)) 

To recover (g,h) explicitly on X' we note that there is a function X: W 
-» Tk with h(e,w) = (X(w\h(w)) and thus 

*(*,") = g(t)h(e,w) = (g(0X(w),A(>v)). 

We know h{x' -a"1) = /*(*')#* (a -1)- Put x' = (/, wa). We have 

h((t, wa)a~l) = Afo(a)(/)m(w,a), w) 

= ( # ) W ) î W ^ , a ) ) À ( w ) , ^ ) ) , 

This is equal to 

(Afcwa))/^*"1) = (gCOACwa),^))//*^-1) 

= fo(#* (a))(g(/)AW)4H/4 (<*_1 )> #* (a)), <M/4 («_1 )) 
= foto («))(*('))*(«• (a))(AM)m(A(w), //* (a)), h(w)). 

Since gfo(a)(0) = *to(a))g(/), w e h a v e 

(7.5) g(m(w,a)) = <|>to(a))(A(>va))m(A(w),i/îN(a))X(w)-1. 

But the operators on Z/*(a) are given by <£ <> H*. Thus this condition says 
precisely that g# (m) = <&* (m). Under 

S: H}(N; MAPS (w, 7*)) - ^ H*(N; Z*), 

g(m(w,a)) corresponds to g*(a) while m(h(w\H*(a)) corresponds to H*(a). 
Consequently, g*(a) = H*(a), which completes the proof of the lemma. 

Thus, if we choose to represent the injective Seifert fiber space (Tk,X,<i>) 
explicitly by choosing a cross-section x: X'/Tk = W -> X' and a 1-cocycle 
m e Zl(N; MAPS (W, Tk)\ we may represent each element of G(Tk,X\<j>) 
explicitly by a triple (g,X,h) so that (7.5) is satisfied. Note that composition is 
given by 

(&>*i^l) ° (&^2^2) = (ft ° 82>(8\h)(h ° ^2)^1 ° h) 

which also gives an explicit representation of the homomorphism 

* = * o / o „': G(r*,X',<#>) -> Out n(X9x0). 

Recall that K is the subgroup of Aut IT which induces the identity on TV 
reduced by those arising from conjugation in <n. 

7.6. THEOREM 9. G(Tk,X\<t>) contains a subgroup Gx{Tk,X\<$>) which is 
mapped by ^ homomorphically onto K C Out TT. 
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Of course, this says that every outer automorphism of 7rx(X), which is in K, 
can be represented by a fiber preserving homeomorphism. 

PROOF. We define G{(T
k,X\<j>) as the subgroup of triples (g,X,/5) so that 

h = id: W -> W. In Gh we take the subgroup 

G2 = {(S,M) = ( /Aid)} . 

Note G2 is the set of functions X: W -> r* so that < (̂a)X(wa) = X(H>) by (7.5), 
for all a E N, w G PT. Such a function is an element of 

H°(N; MA?S (W,Tk)). 

The action on X' is given by 

(7,X, id)(*,w) = (*X(H>),H>) = h(t,w) 

and on A" by 

v'(I,K id)<f,w> = <>X(w),w>. 

We shall check that every A G /^°(JV; MAPS (W, 7"*)) satisfies conditions 1 
and 2 and is therefore an element of G(Tk,X\<j>). 

1. Hf%w)) = h(t't,w) = t'(t\(w),w), 

2. /z((f,w)a) = h(<j>(a~l)(t)m(wa,a~l),wa) 

= (<t>(a~l)((t)\(w))m(wa,a~l\wa) = (h(t,w))a. 

Thus, 

?'(*)<*, w> = H(t,w) = <A(w),w>. 

As a pair ( / ,# ) = *>'(/, X, id) induces an automorphism H* of m which is the 
identity on Zk and the identity on N. H* as an automorphism belongs to 
Horn. (JV, Zk). However in defining H+, a choice of path T': (ƒ, 0,1) -» (A", XQ, 
/I(*O)) has to be made and we use V'(T') = r. This can alter our choice of H* 
by conjugation by an element of Zk. But this conjugation corresponds to an 
element of B^(N; Zk) according to the proof of Theorem 8. Thus each choice 
of X G H£(N;MAPS (W,Tk)) gives rise to a uniquely defined homeomor­
phism H G vf(G2) C G(Tk,X9<j>) so that H* is uniquely determined as an 
element of H^(N; Zk). It remains to check that SX = H+ . 

The coboundary 5: H$(N; MAPS (W, Tk)) -» H£(N; Zk) -> 0 is induced 
from the cohomology exact sequence which itself is induced by the exact 
coefficient sequence 

0 -> MAPS (JV,Zk) -> MAPS (W,Rk) -> MAPS (W, Tk) -> 0. 

The module structure on MAPS (W,Tk) is given by 

(<*#ƒ) (H>) = <j>(a)f(wa). 

Since HUN; MAPS (W,Rk)) = 0, for i > 0 [17, 12.1], 8H° is surjective and 
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5 Hl is an isomorphism, / > 0. Now we observe that by taking the coboundary 
of (7.5) we get (6.7), which verifies our assertion 8\ = H#. However, for the 
skeptical, it won't hurt to point out that 5Aj = 5A2 if and only if AiA2* 
= exp(277/A), where A G H$(N; MAPS (W9R

k)). Note 

As = sA E Hg(N; MAPS (W,Rk)), 0 < s < 1. 

Thus, exp(27nAjA2 is a homotopy between Aj and A2
 s o that at each stage 

exp(27T/A5)A2 G Hg(N; MAPS (W9 T
k)). Thus (I9\l9hx) and (/,A2,A2) are 

equivariantly isotopic and induce an isotopy between vf{I9\9hx) — (I9H\) and 
vf(I9 A2, h2) = (/, H2). The "base" W/N is left fixed and so the isotopy moves just 
in each fiber. 

We still need to explain H*(N;Zk)-* El(N;Zk). This arises because 
v'\ G(Tk,X\ <£>) -> G(Tk

9X9 0) has kernel precisely the covering transformations 
N. Recall that we choose a base point x'0 over x0. If h G G(r/c,Ar,,<J>), then 
define 

(/*Xa)(x') = H*')#*(«), 

where A(x'a) = h(x')H*{a)9 for all a G N. hx a also has the same image as 
h in G(Tk,X,<f>). That is, p'(A) = ?'(* x «)• To make precise which elements, 
as pairs, correspond to h X a we have 

LEMMA. If h G G(Tk,X\<j>) then hXa G G^*, *',</>) am/ 
1. (/i X a)(/x') = (<J>(//Hc(a-1))(g(0)(A X <*)(*')), 
2. (A X <x)(x'p) = (h X «)(*')/*• O*"1/*«)• Furthermore, 

(hXa)Xl3 = hXap. 

From these formulae, we see that *>'(A X a) = p'(/0. The induced homomor-
phism (h X a)* is a conjugation by a composed with H*. This corresponds to 
taking either different base points in X' (all projecting to x0) or equivalently 
taking the different possible lifts for if. 

PROOF. Since h(x'a) = h(x')H*(a\ for all a G N9 then 

p'(h(x'a)) = j/(A X a)(x') = v'(h{x')). 

Thus, *>'(/* X a) = v'{h) = //, and A X a is a lift of //. Now, 

(/i X *){tx') = (A(fx'))fl*(«) = (g(t)h(x'))H*(a) 

= W^(a - 1 ) ) ) (g«) (^ ) ) - ( /4 (a ) ) 

-^(i^(a-1))(g(0)(AXa)(xO, 

and 1 holds. For 2, 

(A X a)(x'fi) = h(xffi)Ht{pi) = A(x'i8a) = h(x'aa-1 pa) = A(x'a)i/* (<*-%) 

= (AXa)(x0i/Hc(«~1M 

For ft G C2 we observe that (A(f, w))a = A((f,w)a). Thus G2X N is con-
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tained in the homeomorphisms of X' with (h X a)(t>w) = (t\(w),w) • a. But 
G2 X N is not necessarily in Gx(T

k,X',<f>). However, we see that the subgroup 
of G2XN with a E %(N) and <J>(a) trivial is a subgroup of G! (7*, *,<#>) and 
maps onto H^(N; Zk). Notice that v'{h) = *>'(/* X «) and M/i))* differs from 
(v'(h Xa) ) # , as an automorphism of TT, by an element of B (̂iV; Z*) modulo 
elements of Bl(N;Zk). 

COROLLARY 1. The group G2(T
k,X',<j>) is mapped homomorphically onto 

Hl(N;Zk) by * . If *(hx) = *(h2\ then (I9HX) is isotopic to (I,H2) with the 
points moving only along the fibers. 

We must now investigate the image of elements in Gi(Tk,X',<}>) not in 
G2(T

k,X\$). Consider g E T^(a). Then g*{a) = a. If we represent m 
E Z\(N\ MAPS (W, Tk)\ where m(a)(w) = m(w,a), a 1-cocycle, so that 
S(m) = a, then g*(a) = a. In terms of m this is 

gm(a)(m(a))-1 = (««^(X)"1, 

for some function \: W -> Tk. In terms of its values on W this says 

g(m(w,a))(m(w,a)yl = ^(«XXOt^XXOv))^1. 

Let us define hg(t,w) = (g(t)\(w\w). We check conditions 1 and 2: 

hg{t%w)) = /*g(/%w) = (g(/'f)X(w),iv) 

= ^ 0 ( g ( 0 M H > v ) = g ( / 0 ^ , w ) , 

Ag((/,w)a) = hg(<t>(a-x)(t)m(wa,a-l),w • a) 

= ( g ^ ' ^ W ^ W ^ a ' ^ A H ^ • a). 

But, g<J> = $g if g^a) = a, and 

(gm(a~l)(wa))(m(a~l)(wa))~ 

= gm(wa, a ' ^ W ^ a ' 1 ) ) ' 1 - ^(a""1)(X(w))(A(wa))~1. 

Thus 

/ig((f,w)a) = (<t>(a-l)(g(t)\(w))m(wa9a-llw • a) 

- (g(0X(w),w)-a = (A,(/,w)).a. 

Therefore, we may define h = id and 

#g</,w> = </*g(f,w)> = <g(0A()v),w>. 

Notice that (#g)* on Z* is g, and on JV is identity. Our formula for g*(a) = a 
when substituted in (7.5) with H* = identity, h = identity, represents an 
element of Kf(a), by (g, X, id) which maps onto g by JCi*(fl) -* r^(a). Now we 
may alter (g,X, id) by any \ E H$(N; MAPS (H^T*)) (recall ^(X^Xf1 

= 1) to get (g, XXt, id). Thus every element of K$(a) is represented. Of course 
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*(*,AAi,id) anc* (̂g,XA2,id) a r e r e la t ed by an equivariant isotopy keeping W fixed, 
provided that SX{ is equal to 8A2. This projects onto an isotopy of 
H(g,XKiM)to (̂g,AA2,id) which just moves each point along its fiber. We may 
also show, as above, that the image of $: Gx(T

k,Xy<f>) -» K is obtained by 
dividing out AT0. 

7.7. [It should be pointed out that for our definitions of h and H we have 
fixed a 1-cocycle m(w,a) representative so that 8(m) = a E H£(N;Zk\ as 
well as having fixed a particular cross-section x- W -> Z', that is a represen­
tation of X ' as Tk X W. We may inquire as to how our constructions depend 
upon these choices. We describe the N action given by mx and xi in terms of 
an m2 and xi- If Xi(w) = HW)X\(W) then 

m2(wa,a~l)\(wa) = <J>(a~1)(A(>v))m1(wa,a~1), 

or equivalently, 

m2(w,a)\(w) = <^(a)(A(wa))m1(w,a). 

That is, m2 is cohomologous to my Similarly, given mx and m2, cohomologous 
1-cocycles, and N{ and JV2, the induced N actions on X' given in terms of a 
cross-section xi> then there is a Tk o iV equivariant homeomorphism (f,w) 
-> (f X(w), w). Thus the second action given by m2 can also be thought of 
describing the first action given by m{ but determined by the cross-section 
Xi(w) ~ (A(w)>w)« Compare [17, 4.3] and [11, §8]. Thus we have lost no 
generality in picking a fixed cocycle representative for 

8"l(a) G H*(N; MAPS (W,Tk)) 

and a fixed cross-section of X\] This completes the proof of Theorem 9. 
7.8. ISOTOPY. TO summarize the isotopy statements that we made during the 

course of the proof let Hx and H2 be two elements of G2(T
k, X, 0). 

COROLLARY 2. (//J)* = (H2)* in Out w9 if and only if Hx and H2 are 
homotopic if and only if they are isotopic moving just along fibers. 

COROLLARY 3. If in addition, (Tk,X,<f>) is a K(TT, \)-space then every 
homotopy equivalence f : X -» X so that f * : TJÏ (A') -» rç (X) represents an element 
of K in Out 77, implies f is homotopic to an automorphism of the Seifert fibering 
so that the induced homeomorphism on W/N is trivial 

7.9. EXAMPLE. This is the geometric analogue of 6.11. Let y be a fiber 
bundle over the circle with fiber a /c-torus. Y can be regarded as the "mapping 
torus" of a homeomorphism k: Tk -> Tk. k is homotopic to an element 
y G GL (fc, Z) and so Y is fiber homotopically equivalent to (Tk,X9 y). If k is 
isotopic to y then Y is bundle equivalent to the fiber (Tk,X9y). Let f(t) 
= det(/f - y) be the characteristic polynomial of y. 

PROPOSITION. If 

l . / ( l ) * 0,and 
2.f(t)*tkf(l/t)/f(0)> 

then every homotopy equivalence f\ X -* X can be deformed to a diffeomorphism 
which moves points only along the fibers. 
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PROOF. In 6.11 we observed that (2) above implies that Out (a) = 0. Here 
a is the extension 1 -» Zk -> Zk oyZ -» Z -> 1. Thus # = Out (TT; Z*). To 
insure Out (77; Zfc) = Out (77) it suffices to have Zk SL characteristic subgroup 
of 77 = Zk °yZ. This is implied by ƒ (1) = det(7 - y) ¥> 0 which completes the 
proof. 

We have shown that the homomorphism Gi(Tk,X9<t>) -» Out 77 is an 
epimorphism. 

In [13, Theorem 2] we proved by a more sophisticated analysis that this 
epimorphism splits. By additional hypotheses such as no eigenvalues equal to 
roots of unity one can prove that 77 has trivial center. Then, 1: Gi(Tk,X9<}>) 
-» &(X) is a homotopy equivalence. 

8. Deforming homotopy equivalences to fiber preserving homeomorphisms. 
8.1. In this section, we examine the realization problem for the full outer 

automorphism group, Out 77. We have defined a significant subgroup 
G(Tk

9X9<t>) of the group of homeomorphisms %{X) of a Seifert fibering 
(Tk,X,<j>). We shall characterize when this group of fiber preserving homeo­
morphisms, G(Tk,X,<j>), is mapped, under V ° /, homomorphically onto 
Out (77). We shall then list numerous examples (Tk,X,<j>) for which ¥ ° i: 
G(Tk,X,$) -> Out (77) is a surjection. 

Let us now consider (W,N). For the particular a G H^(N;Zk) take all 
pairs (h,$), where $ G Aut N and h: W -* Wis a homeomorphism so that 

(i) h(wa) = h(w)$(a), 
(ii) $ G Out (a) C Out (N). 

This set of pairs form a group under (hx, ̂ )(A2, <E>2) = (fy ° A2,$1 o $2). For 
any such pair (h> $), since $ G Aut (a\ there exists g G GL (k, Z) so that 
g(<K«))(0 = (<#> ° $(«))#(» and g*(a) = $*(a). Hence, choose A: W-+ r* 
so that 

Define (g,A) G G(r/:,X,,<^) by (*,w) -> (g(t)X(w),fi(w)). One checks that 1 
and 2 hold and so define i/(g, h) G (?(r*,X, <j>) by <(/, w)> -* <g(/)X(w), /2(n>)>. 
Thus, combining the above with our Lemma 7.4 we have the following. 

THEOREM 10. Let <ï> G Out (a) C Out (JV); f/*e« $ //es /« rite image of the 
composite G(Tk, X9<j>) -> Out (77) -» Out (a), if and only if for some representa­
tive automorphism $ *Aere w a homeomorphism h: W -» W with h(wa) 
= (̂w)<3>(a), for all w G PT a«rf a E N. 

We observe that if the homeomorphism A exists for some one representative 
$ of 0 G Out (a) then, in fact, it exists for all representatives. For if 
$'(<*) = /?$(<*)/T1 for some 0 E N, then define #(w) = h(w)/3~x. Now 

Combining this with Theorem 9 we have 

8.2. COROLLARY. The homomorphism of the group of fiber preserving homeo-
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morphisms SF o /: G(Tk,X,<f>) -» Out (77; Zk) is surjective, if and only if for each 
<ï> E Aut (N) representing an element of Out (a) there is a homeomorphism 
h\W-*W with ft(wa) = h(w)$(a). 

If Zk is a characteristic subgroup of TT then Out (IT; Zk) can be replaced by 
Out (TT); cf. (6.3 and 6.14). 

8.3. VERIFYING THE HYPOTHESIS OF THE COROLLARY. We now wish to 
describe certain situations for which the hypothesis of the corollary is satisfied. 

(a) A trivial, but significant, case occurs when N is finite and the action 
W X N -» W is trivial Then for any $ E Aut N, define h = id on W. If <j> is 

faithful, then Zk will be characteristic and all of Out (77) can be geometrically 
realized. In particular, if W = a point, then X = r * / # is a closed flat manifold 
and every homotopy equivalence of X into itself can be deformed to a 
diffeomorphism. Actually we see that given an automorphism of m we obtain 
g E GL (k,Z), $ E Aut (a) C Aut N and a X E Tk so that the homeomor­
phism t -> g(*)A represents an element of G(Tk,X',<j>) = G(Tk, Tk,<f>). This 
is clearly an affine diffeomorphism of the &-torus with respect to the usual 
Riemannian connection. This yields, by projection, </> -> {g(t)X} an element 
of G(Tk,Tk/N,<t>) = G(Tk,X,<t>). Such a representative diffeomorphism on 
X = Tk/N is an affine diffeomorphism of X. Thus the Lie group of affine 
diffeomorphisms of (X), Aff (X), is mapped epimorphically onto Out (TT). We 
shall see in (9.9) that the kernel is precisely the connected component of the 
identity. This yields our version of Charlap's and Vasquez' Theorem 1 [9], 

The reader may also wish to examine the conclusion of our Theorem 8 in 
case TT is a torsion free extension arising from taking W = a point, N finite 
and <>: N -» GL (k, Z). The group IT is, of course, the fundamental group of a 
flat manifold Tk/N. With a little effort the reader should be able to see that 
the conclusion of Theorem 8, in this special case, is the same as (in fact, a 
refinement of), Charlap's and Vasquez' Theorem 2 in [9] . 

(b) TOPOLOGICALLY RIGID ACTIONS. Let us say that an action (W,N) 
is topologically rigid if given $: N —» N an automorphism, then the action 
(W,N,$) defined by 

(H> * a) = (w)$(a) 

is equivariantly homeomorphic to (W,N). That is, there exists a homeomor­
phism h: W -> W so that h{wa) = ^(w)$(a)(= fi(w) * a). 

If W is a smooth manifold and (W,N) is smooth, then we may call (W,N) 
smoothly rigid if ^ may be chosen to be a diffeomorphism. 

We shall now list some well-known examples of topologically and smoothly 
rigid actions and we shall describe the corresponding Seifert fiber spaces. 

(b)-l. Let E(ri) be the Euclidean group. This is the group of Euclidean 
motions on Rn with the usual Euclidean metric. It can be represented by the 
semidirect product of the vector group of translations, Vn, by the orthogonal 
group, 0(ri). Let N be a uniform discrete subgroup of E(n), that is, E(ri)/N is 
compact. Such a group is called a crystallographic group. The group N acts as 
isometries properly discontinuously on the homogeneous space W 
= 0(n)\E(n), isometric to Rn (with the usual metric). This action is free, if 
and only if, N is torsion free, of course. A theorem of Bieberbach says that N 
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and Nx, two crystallographic subgroups of E(n), are isomorphic if and only if 
they are conjugate by an element of the affine group A(n) = Vn o GL (H,R) 
(see [45, 3.2.2]). Thus, in particular, (W,N) is smoothly rigid. 

Each crystallographic group, N9 which gives rise to Bieberbach classes gives 
rise to many Seifert fiberings other than just flat manifolds. For example, 
suppose N = (Z X Z) o Z/2Z, where Z/2Z acts on Z 0 Z by (m,n) -> (-w, 
—/i). Then 

H2(N; Z ) ^ Z 0 (Z/2Z 0 Z/2Z 0 Z/2Z), 

when <j> is trivial. There are an infinite number of closed aspherical 3-manifolds 
with different fundamental groups representing the different Bieberbach 
classes. Here it can easily be shown that only one of the Bieberbach classes 
gives rise to a manifold which possesses a flat structure. Thus knowing N is 
smoothly rigid tells us that G(Sl,X,<j>) -» Out (wx,(X)) is surjective for an 
infinite number of Seifert fiber spaces, X> constructible from N. (To see that 
Outirx(X) = Out (?7i(X);Z) we need only observe that N is centerless.) 
Moreover, observe that the smooth rigidity of this particular N also guarantees 
the surjectivity of G(Tk

9X,<f>) -» Out (*x(X)\Zk) for the myriad of other 
examples when we let <j> and k be arbitrary. 

(b)-2. Let N and N' be uniform discrete subgroups of a semisimple analytic Lie 
group G which has no compact factors nor any ^-dimensional factors and trivial 
center (more generally we can assume that the closed discrete group N is such 
that G/N has finite volume and there exists no (analytic) homomorphism of G 
onto PSL (2,R) with the image of TV discrete in PSL (2,R)). Then, K/G = W 
is a Riemannian symmetric space, where K is a, maximal compact subgroup. 
A theorem of D. Mostow (and extensions by G. Prasad) says that if$:_N -» N' 
is an isomorphism then there exists an automorphism <ï>: G -* G so that $\N = $ 
(see [34, 24.1 and 24.2]). This strong rigidity theorem can be used to show that 
(W9N) is smoothly rigid as follows. Let $: N -^ N be an automorphism. The 
extension <I> may not be an inner automorphism of G (which would immedi­
ately yield smooth rigidity) so we observe that Aut (G) is a, finite extension of 
G = Inn (G ) by Out (G ), from the classification theory. 

Let Aut (G) = Gi be the corresponding Lie group. Let Kx be a maximal 
compact subgroup of G{ projecting onto AT under the homomorphism Gx -> G. 
The space K{\G{ is naturally isomorphic to K\G = W and Gx acts on 
KX\GX = K\G. Now the right actions (K\G,N), (K\G,$(N)) are equivalent 
by a diffeomorphism lying in Gx. That is, <ï>: G -> G is an element of Gj, and 
the diffeomorphism is given by Ti{g) = <5g<I>~ in Gx. Since G is normal in 
Gl9 $g<P-1 G G. If we define h(Kxgx) = Kxgx$~\ then 

h(Kxgxy) = Kxgxy$-1 = (Klgl*rl)(p&rl) 

= h(KxgxWy) = h(Kxgx)<I>(y). 

Thus (W9N) = (K\G9N) = (KX\GX9$(N)) are conjugate in the slightly 
larger group Gx of diffeomorphisms of the homogeneous space K\G. 

(b)-3. Let G = W be a simply connected solvable Lie group, and N a uniform 
discrete subgroup (more generally, let N be a lattice in G). G is diffeomorphic 
to Rn. A famous theorem of Mostow states that (W9N) is smoothly rigid. Note 
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that in this case N is necessarily torsion free. A special case concerns N being 
a torsion free, finite generated, nilpotent group. Then a theorem of Mal'cev 
states that N is a uniform discrete subgroup of some unique (up to isomor­
phism) analytic, simply connected, nilpotent Lie group. Furthermore, any two 
isomorphic copies of N in G are conjugate. 

(b)-4. Let W = R2 and N a properly discontinuous effective group of 
orientation preserving homeomorphisms of R2. Then N is topological^ equiv­
alent to a properly discontinuous action of a discrete subgroup of the 
Euclidean group E(2) on the Euclidean plane or a discrete subgroup of the 
linear fractional transformations PSL (2, R) of the hyperbolic plane. Thus, up 
to topological equivalence, any action (W,N) with W/N compact can be 
regarded as a uniform action (SO (2)\E(2\N) or (SO (2)\PSL (2, R),N) with 
N crystallographic or Fuchsian. It is known that N is differentiably rigid when 
N is Fuchsian [31] and we have already observed this for N crystallographic. 
Therefore (R2, JV) is topologically rigid. 

A similar result also holds if some elements of N reverse orientation. 
8.4. The corollary of 8.2 and 8.3 yields a great deal of information 

concerning Problem 1-C. In the examples cited, all Bieberbach classes give rise 
to aspherical manifolds. In fact, 7r0(S(X)) = Out(7r1(A

r)) and in cases (a), 
(b)-2, and (b)-4 it is easy to see that Out (ir\Zk) = Out IT by using 6.3. We 
have, in particular, 

THEOREM 11. Let X be a closed aspherical manifold arising as a Bieberbach 
class from a rigid action (W,N) of type (a), (b)-2 or (b)-4; then every self-
homotopy equivalence may be deformed to a fiber preserving diffeomorphism. 

For X of type (b)-l and (b)-3 every self-homotopy equivalence which projects to 
Out (n; Zk) may also be deformed to a fiber preserving homeomorphism. 

The manifolds of type (b)-4 have been exhaustingly treated in [17, §12]. 
When k = 1, recall (5.8(e)) that they are the well-known classical closed 
Seifert 3-manifolds [39] (except for the cases where a classical Seifert manifold 
has fundamental group finite, infinite cyclic or Z o Z/2Z, which correspond to 
those whose universal covering is the 3-sphere, or S2 X R1. For all other cases 
the classical Seifert manifold is aspherical. If orientation reversing (R2,N) are 
considered our fiberings are more general than the classical Seifert fiberings. 
F. Waldhausen and, independently, P. Orlik, E. Vogt and H. Zieschang had 
proved earlier that every homotopy equivalence of a classical Seifert 3-
manifold deforms to a fiber preserving diffeomorphism by quite different 
methods. By extending these methods, H. Zieschang has announced a similar 
result for the class (b)-4 [46]. When k = 2 in (b)-4 the manifolds include all 
the elliptic surfaces S of Kodaira [28] for which the defining holomorphic map 
S onto the algebraic curve has no exceptional fibers and which have no 
covering of the type S l X S 3 o r r 2 X S 2 . That is, they correspond to elliptic 
surfaces which are aspherical. Such an elliptic surface must occur exactly 
when N is orientation preserving and <j>: N -> GL (2, Z) lies in GL (1, C). The 
elliptic surfaces diffeomorphic to algebraic elliptic surfaces corresponding 
exactly to Bieberbach classes of finite order. Furthermore, the arguments used 
to obtain the corollary can be refined to show that all the manifolds 
constructed in examples (a), (b)-2, and the Fuchsian case of (b)-4 are 
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diffeomorphic if and only if, they have isomorphic fundamental groups. While we 
will not go into this point at this time, it does settle Problem 1-B within the 
class of manifolds constructed in the examples. Unfortunately, this does not 
say much about whether there exist other manifolds of the same homotopy 
type which are not Seifert manifolds. As mentioned earlier, the answer to this 
question in case (b)-4 with k = 1 is negative, if and only if, the Poincaré 
conjecture, in dimension 3, is true. 

9. The domination of &(M) by %(M) and the geometric realization of finite 
subgroups of Out n. 

9.1. In §7 we cited that for almost all A>torus bundles M over the circle the 
epimorphism G{(T

k
9M,<t>) -* Out (rç(M)) splits and that i: G{(T

k,M,<t>) 
-> ë(M ) is a homotopy equivalence. In general, for any space X, if we can find 
a subgroup Gx of %(X) so that under the inclusion 1, restricted to Gh the 
(restricted) / is a homotopy equivalence between Gx and &(X), then %(X) 
-*-> &(X) is a domination since the composition &(X)l *=* i(G\) -» %(X) 
-*-> &(X) is homotopic to the identity. In particular, 

is an epimorphism, for all / > 0. 
In this section we will establish the domination for the examples at the end 

of the last section. Our method is to re-examine G(Tk,X,<j>) and embed in 
G(Tk,X,$) a toral action Ts. We will show that the evaluation homorphism 
has image exactly the center of TTX(X). However, the additional splitting of the 
epimorphism %(X) -> Out 77i(X), is only partially settled for these cases. In 
fact an affirmative solution to the splitting problem has many significant 
consequences. We have investigated in [13] a somewhat simpler problem: 

PROBLEM 10. If F is a finite subgroup of Out ^(X), where (Tk,X,<t>) is a 
Seifert fiber space, does there exist F{9 a finite subgroup of %(X\ so that 
^ o i: Fx -> F C Out (TTX(X)) is an isomorphism? 

This problem makes sense for any space and is especially meaningful when 
TTQ(8(X)) replaces Out (TTX{X)). The significance of this problem, in terms of 
number theory, manifold theory and group theory, for an arbitrary aspherical 
manifold is discussed in numerous places. See, for example, Serre [40], 
Johnson and Wall [27], Conner and Raymond [17], and K. Brown [7]. 

For 2-manifolds, the answer is known to be affirmative if F is solvable (see 
[47]), but unknown for arbitrary F. Recently, Raymond and Scott [37] have 
shown that there exist aspherical Seifert manifolds (Tk,Mn,<p) and cyclic F so 
that F cannot be lifted back into %(X), for all n > 3. The aspherical manifolds 
in [37] are actually nil-manifolds. Self-diffeomorphisms H are constructed 
whose nth power are diffeotopic to the identity but there are no homeomor-
phisms K homotopic to H so that Kn is the identity. 

We shall, nevertheless, answer Problem 10 affirmatively for all finite sub­
groups F C Hç(N;Zk) Q Out (TT). This will follow from the proof that in 
injective Seifert fiber spaces (Tk>X,<t>), there exists an injective toral action 
{T\X) where ev£°: ^ ( 7 " , 1) -» ^(Jf,jc0) has image 2(*r) n Z*. 

9.2. H®(N; Tk) AS A SUBGROUP OF %(X). Let us take an injective Seifert 
fiber space (Tk,X,<}>). Since <#>: N -* GL (A:,Z), the group N acts on Tk by 
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(a,t) -> <j>(a)t. The fixed point set, G = H£(N; Tk), is a closed subgroup of 
Tk. Let G0 be the connected component of the identity. It is a sub torus of 
dimension s. We can find a splitting of Tk into Ts X Tk~s so that G 
= G0 X G/G0 with G0 = Ts and G/G0 C T*""5. Let Nx be the stabilizer of 
all Wànd put iV0 = Ai n (kernel </>). 

THEOREM 12. 7%e grow/? G acts on X so that ev£°: TTX(TS, 1) -» flj(Y,x0) has 
image Z(TT) H Z^. The finite group G/G0 maps isomorphically onto the torsion 
subgroup of Hç (N; Zk). 

Moreover, G0 acts injectively and acts effectively as the s-torus GQ/N0 fl G0; 
G/G0acts effectively as (G/G0)/(G/G0) D N0 and, as such, represents the image 
ofG/G0inHl(N;Zk). 

PROOF. We may choose Ts X Tk~s so that i+: m(Ts)-* irx(T
k) corre­

sponds to H®(N; Zk). We can see this from the exact sequence 

0 -> H*(N; Zk) -> ^°(JV; R*) -* H*(N; Tk) -&* H*(N; Zk). 

Note that G/G0 is mapped by 8 isomorphically onto the torsion subgroup of 
H^(N; Zk) and that S maps G0 trivially. Each element of H$(N; Tk) can be 
regarded as a continuous function X: W -> 71* so that X is constant on W with 
value an element of Tk that is left fixed by the action of N. That is, 

</>(«)(\(wa)) = X(w), for all a E JV. 

Thus X e G is an element of #<£(#; MAPS (W, Tk)). Therefore, the action of 
G C Ts X F*""5 = r * commutes with the action of N on X' and we obtain 
an action of G on Z'/JV = X. It is clear that ev£°: irx(T

s, 1) -> *i(X9x0) is 
precisely Zs Q Zk. 

We shall now show that G acts effectively as G/G n iV0. Suppose X<7, w> 
= (\t, w} = <f, u>), for all <ƒ, w). Then for a fixed (/, w), there exists a G N} 

so that (Xf, w)a = (*, w). Thus, as X itself must be a covering transformation, it 
must be a"1 . In particular, we have \<t>(a)(t)m(w,a) = t, for all /. Hence for 
t' E G, we have <j>(a)(t') = t'. Consequently, X = m(w,a)~~ . Thus for arbi­
trary t, </>(«) (t) = (t). Thus a E kernel <ƒ> and hence an element of N0. Con­
versely, an element oî G O N0 stabilizes all of X. 

We now claim 2(TT) D Zk = Zs C Zk. For (m,e) E 2(TT) implies m = 
<#>(«)(m), for all a E JV, hence 2(TT) D Zk C (Zk)N = Zs. Conversely, (m,e) 
in Z5 implies (m, e) E %{m). 

93. We may strengthen this theorem when %{N) n (kernel <|>) is trivial to 
answer part of Problem 10. 

COROLLARY 1. Let (Tk,X,<j>) be an infective Seifert fiber space with %(N) 
fl (kernel <ƒ>) = 1. For any finite F Q H^(N;Zk) Ç Out IT, there exists finite 
Fx C %(X) so that ^ o i: F\ —> F w a« isomorphism. 

Furthermore, %(w) = Z5 Ç Z* and f/iere extófó an injective toral action 
(TS,X) so that ev*° (TT^T8, 1)) is the whole center Zs. 

PROOF. Since £(JV) n kernel <j> = 1, £^ = 5 J . Hence, 
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Furthermore, we proved that G/G0 is mapped isomorphically onto the torsion 
subgroup of H£(N; Zk). We claim that G/G0 acts effectively on X. The reason 
is that N0 n G must also be a central element of N as the reader may wish to 
check. Since, Z(N) n (kernel <j>) = I, N0 D G = I and G0 and G/G0 acts 
effectively. Moreover G/G0, which is abelian, is the full torsion subgroup of 
H*(N;Zk). Of course, 2(*r) = V = %{TT) n Zk since 2(JV) n (kernel $) is 
assumed trivial. 

Notice that the action in the theorem and the corollary is just along fibers. 
To improve this result is a very delicate matter. 
9.4. DOMINATION OF S0(X) AND &(X). The second major application of 

Theorem 12 is the domination of &Q(X), the connected component of the 
identity of &(X), by the connected component of the identity, %0(X\ of 
%(X). Let A" be a compact K(TT, 1) and a Seifert fiber space (Tk,X,<j>) so that 
Z(N) n (kernel <#>) is trivial. Then 

COROLLARY 2. i: %Q(X) -» S o 0 0 ^ ö domination. Furthermore, if ^ ° i: 
%(X) -» Out (TT) W surjective, for example as in (a), (b)-2 or (b)-4 of 8.3, f/ien 
/: ^A") -* S(A") w a domination. 

PROOF. Our group G0 C %Q(X) is a torus Ts and gives an action (TS
9X) 

so that ev£°: ^ ( r 5 , 1 ) -» ^(A^XQ) is an isomorphism onto the center of 
ITI(X9XQ). By 3.1, this means that the embedding Ts *-» S0(X) is a homotopy 
equivalence. By the principle annunciated at the beginning of 9.1 this makes 
the inclusions G0(T

k,X,(j>) and %o(X) dominations. Moreover, if ^ o i is 
surjective, then the inclusions G(Tk,X,<f>) ^ &(X) and %(X) *+ &(X) are 
dominations. 

9.5. HITTING THE CENTER. We may as well point out another fact that 
partially solves Problem 3. Let (Tk, X,<f>) be an injective Seifert fibering so that 
%(N) n kernel <j> is trivial. We have shown that the center 2(TT) is a free 
abelian group of rank s, and necessarily, an injective action (Ts, X) exists for 
which ev£° (iri(Ts,X)) is precisely the center of IT. This means that the largest 
possible injective action that can occur actually must occur. 

We have noticed that the existence of a Bieberbach class a E H^(N;Zk) 
and a corresponding Seifert fibering (Tk,X,<j>) usually entails the existence of 
many more such classes a' G H£(N; Zk) by [14, 3.3, 3.4, 3.5]. Thus in case we 
have one aspherical X with %{N) D kernel <j> = 1, then every aspherical Seifert 
fibering (Tk,M,<j>) arising from any Bieberbach class in H^(N;Zk) (note no 
dependence upon an explicit (W,N)) must have center of rank exactly s and 
a "maximal" (TS,M) action. Therefore the homotopy type of&0(M) does not 
depend upon the explicit Bieberbach class but only upon </>: N —> GL (A:,Z). 

9.6. A N APPLICATION TO GROUP THEORY. We would like to illustrate how 
some of the geometric ideas developed herein can be used to solve a problem 
in group theory. Let F C H^(N; Zk) C Out (IT) where m satisfies 1 -> Zk --» m 
-» JV -> 1 with %{N) n kernel <j> = 1 as above. We may ask if there exists an 
extension of the form 1 -» TT -> E -* F -» 1 with operators coming from 
F C Out IT. 

COROLLARY 3. All such extensions exist. 

PROOF. Choose any Seifert fiber space (Tk
9X,<t>) with Bieberbach class 

a e H}(N; Zk) representing the given extension 1 -> Zk ~> TT -» N -> 1. 
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Such always exist by choosing for W the universal covering of a space whose 
fundamental group is N. Corollary 1 constructs on X an action of Fx so that 
SF o f-, Fx -> F is an isomorphism onto. Thus an extension 1 -» IT -> E -* F 
-» 1 does exist with prescribed operators. See [17, §2] for an explicit 
construction of the group extension from the group action. Now all extensions 
can be constructed from this extension by the usual methods, e.g. [32, p. 128]. 

9.7. Our next application solves a very special but interesting case of a well-
known problem about Poincaré duality groups and aspherical manifolds. It 
also may be used to solve the corresponding special case of Serre's problem 
concerning torsion free groups of type VFL (virtual finite length) [40, p. 101]. 
See also [7]. 

Let (Tk,M,<t>) be an aspherical manifold and an injective Seifert fibering 
with Bieberbach class a E H^(N; Zk) corresponding to the extension 1 -» Zk 

-> 77 -> N -> 1. For any finite group F C H^N; Zk) C Out (*r) with Z(N) 
n kernel <£ = 1, we constructed an effective group action (F,M). This gives 
rise to an explicit group extension 1 -> m -» E -> F -> 1. We may ask when 
is this extension free? 

The extension is torsion free if and only if (F, M ) is free. 
This is shown in [17, 2.4], Moreover, any action (FXiM) giving rise to an 

equivalent extension must also be free. Therefore, we have 

COROLLARY 4. There exists an aspherical manifold whose fundamental group is 
E if and only if the group E in the extension 1 —» TT —> E -> F -* lw torsion free. 

9.8. Since (F,M) only moves along fibers it is relatively easy to determine 
whether the extension E is free or not. Let X E F C H^(N; Zk) and suppose 
X(t,w} = (Xt, u>> = <7, w). Then there exists a - 1 E N so that 

(Xt9w) = (t,w)a~l. 

That is, tx(ct) = Xt, and a~l E Nw. This means that X is a value of the 
crossed homomorphism x* Nw -» T^ which determines the action on the fiber 
(Tk X w). Thus, if the order of F were relatively prime to the orders of each of 
the Nw, then the action (F,M) would be free. An important special case occurs 
when (W,N) is free. Then, the action (F,M) is always free. 

(The following seems amusing. Recall that G2 as defined in §7 contains F if 
F C H£(N; Zk). This part of G2 actually commutes with the action of N on 
AT, and thus M/F9 in this case, can be described by an element of 
H$Xe(N X F; Zk\ where e: F -» GL (fc,Z) is trivial. This "fibers" over W/N 
for the action of F on W can be taken to be trivial. Thus M/F is also an 
injective Seifert fibering where E is torsion free. M/F is probably homeomor-
phic to M.) 

A class of specific examples has already been described in 6.11. These k-
torus bundles over the circle have H*(Z;Zk) = (Z* / ( / - *0))Z*), a finite 
subgroup of order equal to |/(1)|. Of course, this subgroup acts freely on M. 
In [13] we show that M/F where F C H^ (N; Zk) is always diffeomorphic to M. 

9.9. EXAMPLE. Closed flat manifolds. We shall obtain topologically some of 
the results of [9] (see §§4.6.3 and 8.3). Let N be a finite group and 
<j>: N -» GL (/c,Z) a representation. If a E H$(N; Zk) is a Bieberbach class 
then the extension l-»Z*->7r~>iV-» lis torsion free. We can, without any 
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loss of generality, assume that <j> is a faithful representation. We form the 
associated Seifert fiber space by taking for W a point, and the action of N on 
W to be trivial. We may choose a 1-cocycle m representative in 

H*(N; MAPS(point, Tk)) = H+(N; Tk) 

so that 8(m) = a, and define the free action (Tk,N) with (Tk,X,$) 
= (Tk,Tk/N,<t>). The action of AT is a covering group of isometries and 
coincides, when the usual flat metric on Tk is taken, with the holonomy group 
of the flat manifold X. In fact, clearly the Bieberbach classes of H^(N;Zk) 
coincide with the closed flat manifolds with holonomy N. 

COROLLARY 5. The finite subgroups F of H^(N;Zk) can be geometrically 
realized by finite groups of isometries. Moreover, Ts X G/GQ = G acts effectively 
as a group of isometries on X so that V o /(G) = H^(N;Zk) = H$(N;Zk) 
= G/G0. Furthermore, the center %(*ri) maps monomorphically into HX(X) with 
finite cokernel and the image of the evaluation homomorphism ev£°: ^ ( r 5 ) 
-> ITI(X,XQ) is precisely %(ir). 

PROOF. Since <j>: N -> GL (k,Z) is faithful Corollary 1 applies to realize 
F C K. Moreover, from the way we have made our realizations it is clear that 
they are isometries. Since Zk is a maximal abelian subgroup of IT, %(TT) C Zk 

and hence Z(w) = Zs = (Z*)" = H$(N; Zk\ 
We check now that Hx(T

k/N; Z) has rank s. We have that (Hx(T
k; Q))N 

-> Hx(T
k/N; Q) is an isomorphism. Consequently, 

ev£: 77!(Ts, 1) -> n(T
k, 1) -^ n(Tk/N) -* Hx(T

k/N;Z) 

is a monomorphism with finite cokernel. Thus the action (TS,X) is homologi-
cally infective and s = rank %{m) = dim G = rank HX(X; Z). 

From the exact sequence 

0 -> (Zk)N -+ (Rk)n -* (Tk)N -> Hl(N; Zk) -> 0 

we see that G/G0 = H*(N; Zk). 
The fact (TS,X) is homologically injective will enable one to show that 

(Ts,X) fibers equivariantly over (Ts, Ts/A) with fiber a flat closed manifold 
and finite abelian structure group A C Ts [12, §7], [45, 3.63]. 
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