BOUNDED MEAN OSCILLATION WITH ORLICZ NORMS AND DUALITY OF HARDY SPACES

BY JAN-OLOV STRÖMBERG

Communicated by A. P. Calderón, July 21, 1976

This paper is a summary of the contents in [5] (with the same title). BMO was introduced by John and Nirenberg as the space of locally integrable functions f on \mathbb{R}^n such that

$$(1) \qquad \qquad \int_{Q} |f(x) - f_{Q}| \, dx \le Am(Q)$$

for some constant f_Q and for all cubes Q in \mathbb{R}^n , where $A \ge 0$ only depends on f. (m is the Lebesgue measure in \mathbb{R}^n .) John and Nirenberg [2] have shown that (1) will imply

(2)
$$m\{x \in Q; |f(x) - f_Q| > t\} \le C_1 m(Q) \exp(-C_2 t/A), \quad t > 0,$$
 with A the same as in (1).

If we assume that f a priori only is a measurable function on \mathbb{R}^n and replace (1) by

(1')
$$m\{x \in Q; |f(x) - f_O| > A'\} < \frac{1}{2} m(Q),$$

then it is still true that $f \in BMO$ and (1) holds with $A \leq CA'$. In fact, a proof similar to that of [2] shows that (1)' implies (2). If the constant 1/2 in (1)' is replaced by a larger number, the result is no longer true.

Let us now assume that the numbers A and A' in (1) resp. (1)' are not uniform but depend on x (but not on Q containing x). We define $M^{\#}f(x)$ resp. $M_0^{\#}f(x)$ as the infimum of such A(x) resp. A'(x). (2) will now be replaced by

(3)
$$m\{x \in Q; |f(x) - f_Q| > t\}$$

$$\leq C_1 m(Q) \exp(-C_2 t/s) + m\{x \in Q; M_0^{\#} f(x) > s\}, \quad s, t > 0.$$

From (3) it follows that $\|M_0^\# f\|_{L^p}$ is equivalent to $\|M^\# f\|_{L^p}$, 1 . It was shown by Fefferman and Stein in [1] (under some nonessential restrictions) that

(4)
$$||Mf||_{L^p} \le C||M^{\#}f||_{L^p} \quad \text{modulo constants, } 1$$

AMS (MOS) subject classifications (1970). Primary 30A78, 46E30.

Key words and phrases. Bounded mean oscillation, Hardy H-spaces, maximal functions Orlicz spaces, Riesz transforms.

where M is the usual Hardy-Littlewood maximal operator. However, (4) is not true for $p = \infty$ since BMO is not contained in L^{∞} . Therefore we are interested in spaces with $M^{\#}f$ in some Orlicz space "near" L^{∞} .

Let φ be a nonnegative, increasing, convex function on $\mathbf{R}^+(\varphi(0)=0)$, and let φ^* be its convex conjugate. We define the Orlicz space L_{φ} as the space of functions f with norm (see [3])

$$||f||_{L_{\varphi}} = \inf_{\lambda > 0} \frac{1}{\lambda} \left[\int_{\mathbb{R}^n} \varphi(\lambda | f(x)|) dx + 1 \right] < \infty.$$

If φ satisfies

(5)
$$\varphi(2t) < C\varphi(t) \quad \text{for all } t > 0,$$

 L_{φ} is separable with $L_{\varphi}*$ as its dual space.

Now we define $L_{\varphi}^{\#}$ as the space of functions f, modulo constants, such that $M^{\#}f \in L_{\varphi}$ with norm $\|f\|_{L^{\#}} = \|M^{\#}f\|_{L_{\varphi}}$.

The proof of (4) in [1] works in following more general setting. If φ and $arphi^*$ satisfy (5) then (4) holds with the L^p -norms replaced by L_{arphi} -norms, and then $L_{\varphi}^{\#} \equiv L_{\varphi}.$

We shall now define the Hardy space with Orlicz norm H_{φ} as the space of functions $f \in L_{\varphi}$ with the Riesz transforms $R_i f$, $i = 1, \ldots, n$, also in L_{φ} , and with the norm defined by

$$||f||_{H_{\varphi}} = ||f||_{L_{\varphi}} + \sum_{i=1}^{n} ||R_{i}f||_{L_{\varphi}}.$$

As for the H^p spaces in \mathbb{R}^n (see [4]) there are several equivalent definitions.

If φ and φ^* satisfy (5) then $H_{\varphi} \equiv L_{\varphi}$.

We now come to the main result, which is a generalization of the result of Fefferman and Stein [1] that BMO is the dual space of H^1 .

THEOREM. If φ satisfies (5) then $L_{\varphi}^{\#}$ is the dual space of H_{φ} . More precisely, there is a dense subset $H_{\varphi}^{\mathbf{0}}$ of H_{φ} such that (i) for every bounded linear functional l on H_{φ} there is a function $g \in L_{\varphi^*}^\#$ with $\|g\|_{L_{\varphi^*}^\#} < C\|l\|$ such that

$$l(f) = \int_{\mathbf{R}^n} f(x)g(x) \, dx$$

for every $f \in H_{\varphi}^{0}$, (ii) if $g \in L_{\varphi}^{\#}$, then

$$l_g(f) = \int_{\mathbf{R}^n} f(x)g(x) dx$$
 for $f \in H_{\varphi}^0$

extends to a bounded linear functional on H_{φ} and $\|l_g\| \leq C \|g\|_{L^{\#}}$.

The representation is unique, i.e. $I_g = 0$ if and only if g is constant.

For the proof we refer to [5]. The only interesting case of the Theorem is when φ does not satisfy (5), since otherwise it only says that $L_{\varphi^*}^\# \equiv L_{\varphi^*}$ is the dual space of $H_{\varphi} \equiv L_{\varphi}$.

REMARK. The method of the proof of the Theorem in [5] would work for more general spaces than Orlicz space with the norms defined in terms of distribution functions, for example Lorentz spaces.

Finally, I would like to express my deep gratitude to Professor Lennart Carleson for his advices and interest.

REFERENCES

- 1. C. L. Fefferman and E. M. Stein, H^p -spaces of several variables, Acta Math. 127 (1972), 137-193.
- 2. F. John and L. Nirenberg, On functions of bounded mean oscillation, Comm. Pure Appl. Math. 14 (1961), 415-426. MR 24 #A1348.
- 3. M. A. Krasnosel'skii and Ya. B. Rutickii, Convex functions and Orlicz spaces, GITTL, Moscow, 1958; English transl., Noorhoff, Groningen, 1961. MR 21 #5144; 23 #A4016.
- 4. E. M. Stein, Singular integrals and differentiability properties of functions, Princeton Univ. Press, Princeton, N. J., 1970. MR 44 #7280.
- 5. J. O. Strömberg, Bounded mean oscillation with Orlicz norms and duality of Hardy spaces, Institut Mittag-Leffler Report No. 4, 1975, 48 pp. (preprint).

INSTITUT MITTAG-LEFFLER, AURAVÄGEN 17, S-182 62 DJURSHOLM, SWEDEN