THE FUNCTIONS OPERATING ON CERTAIN ALGEBRAS OF MULTIPLIERS 1

BY MISHA ZAFRAN

Communicated by A. P. Calderón, April 8, 1976

In this note, we announce a new result concerning functions operating on multiplier algebras. We begin by introducing the following notation. Let G be a LCA group with dual group Γ . M(G) will denote the algebra of finite, regular Borel measures on G. Let $M_0(G) = \{\mu \in M(G) | \hat{\mu} \text{ vanishes at } \infty \text{ on } \Gamma \}$. If $1 \leq p < \infty$, let $M_p(G)$ denote the class of multiplier transformations on $L_p(G)$. If $T \in M_p(G)$, \hat{T} will be the unique function in $L_\infty(\Gamma)$ so that $T(f)^{\hat{\Gamma}} = \hat{T}\hat{f}$, for all integrable simple functions f. Finally, we write $C_0M_p(G) = \{T \in M_p(G) | \hat{T} \text{ is continuous and vanishes at } \infty \text{ on } \Gamma \}$.

Suppose that G is nondiscrete. It is well known that only entire functions operate on the Banach algebra M(G) [3, Chapter 6]. This result was strengthened in [1]. There, Igari showed that only entire functions operate from M(G) into the algebra $M_p(G)$, $1 , <math>p \neq 2$. In [4], Varopoulos showed that for compact G, only entire functions operate on $M_0(G)$. We have the following theorems, which, in a sense, may be viewed as the L_p analogues of the aforementioned result of Varopoulos.

THEOREM 1. Let $1 with <math>p \neq 2$. Suppose that $F: [-1, 1] \to \mathbb{C}$ and that F operates on the algebra $C_0M_p(\mathbb{T}^n)$. Then F coincides with an entire function in some neighborhood of 0.

THEOREM 2. Let $1 with <math>p \neq 2$, and let G denote one of the groups \mathbb{R}^n or \mathbb{Z}^n . Suppose that $F \colon [-1, 1] \to \mathbb{C}$ and that F operates on the algebra $C_0 M_p(G)$. Then F coincides with an entire function on [-1, 1].

These results complete the investigation begun by the author in [5]. We now indicate some of the ideas involved in the proof.

Assume that G=T and $1 . By standard arguments (see [1] and [3, Chapter 6]) we may assume that <math>F(x) = \sum_{k=1}^{\infty} a_k x^k$ for $|x| < \epsilon$. It then suffices to show that there exists j_{ϵ} such that

$$|a_i| \leqslant C_c 10^j$$

for all $j \ge j_\epsilon$. This is accomplished by studying refinements of the multipliers considered in [5]. Corresponding to the sequence $\{a_j\}$, we construct measures $\{\lambda_j\}$, λ in M(T) so that for all j

AMS (MOS) subject classifications (1970). Primary 42A18.

¹This work was supported in part by NSF Grant GP28112A.

(2)
$$\hat{\lambda}_j$$
 is real-valued and $\|\hat{\lambda}_j\|_{\infty} \leq 2^{\frac{1}{2}} 2^{-n(j)/2}$,

$$|\lambda_i| \leq \lambda,$$

(4)
$$\left\| \sum_{k=1}^{j} a_k 2^{n(j)k/p'} \lambda_j^k \right\|_{M_p} \ge c(j!/j^j) 2^{-j/p'} |a_j|.$$

Here $\{n(j)\}$ is a sequence of positive integers tending to infinity and 1/p+1/p'=1. As in [5], the measures $\{\lambda_j\}$ and λ are essentially obtained as "generalized Riesz products" of combinations of certain Rudin-Shapiro measures. Inequalities (4) is proved by carefully studying the combinatorial properties of these Rudin-Shapiro measures. Moreover, the special properties of Rudin-Shapiro polynomials makes it possible, in essence, to "ignore" the term $\sum_{k=j+1}^{\infty} a_k 2^{n(j)k/p'} \lambda_j^k$ when estimating $|a_j|$. We now define $U\{f_j\} = \{2^{n(j)/p'} \lambda_j * f_j\}$. Then U is a bounded operator on $L_p(l_2)$. We construct our basic multiplier T by "cutting off" and "piecing together" the measures $2^{n(j)/p'} \lambda_j$ via the Littlewood-Paley theory (see [5] for details). The estimate (1) then follows by studying the multiplier F(T), and using the properties of $\{\lambda_j\}$. This will prove Theorem 1 for the circle groups.

Theorems 1 and 2 now follow by rather standard arguments for the cases $G = \mathbf{T}^n$ or $G = \mathbf{R}^n$. However, the case $G = \mathbf{Z}^n$ (more particularly, if $G = \mathbf{Z}$) is more difficult and requires some additional ideas.

We prove the theorem for the integer group by constructing a multiplier $S \in C_0 M_p(\mathbf{R})$ so that \hat{S} is real-valued, supp $\hat{S} \subseteq [0, 1]$, and so that the behavior of \hat{S} near the origin reflects the behavior of our basic multiplier \hat{T} near ∞ . The construction consists in combining the method outlined above, with a technique of Igari [2].

The proof is essentially in the same spirit as that indicated for $G=\mathbf{T}$. However, the arguments are much more involved. In particular, we introduce a vector-valued analogue of the space BMO. This allows us to obtain sharp L_p estimates for the operators involved in our constructions.

Detailed proofs of the ideas sketched here will appear in [6].

REFERENCES

- 1. S. Igari, Functions of L^p multipliers, Tôhoku Math. J. 21 (1969), 304-320.
- 2. ——, Functions of L^p multipliers. II, Tôhoku Math. J. 26 (1974), 555-561.
- 3. W. Rudin, Fourier analysis on groups, Interscience, New York, 1967. MR 27 #2808.
- 4. N. Varopoulos, The functions that operate on $B_0(\Gamma)$ of a discrete group Γ , Bull. Soc. Math. France 93 (1965), 301-321. MR 24 #565.
- 5. M. Zafran, The spectra of multiplier transformations on the L_p spaces, Ann. of Math. (2) 103 (1976), 355-374.
- 6. ——, The functions operating on multiplier algebras, J. Functional Analysis (to appear)

DEPARTMENT OF MATHEMATICS, STANFORD UNIVERSITY, STANFORD, CALIFORNIA 94305