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In this note, we announce a new result concerning functions operating on 
multiplier algebras. We begin by introducing the following notation. Let G be a 
LCA group with dual group I\ M(G) will denote the algebra of finite, regular 
Borel measures on G. Let M0(G) = {M E M(G)\ jl vanishes at <*> on T}. If 1 < 
p < °°, let M (G) denote the class of multiplier transformations on L (G). If 
T G Mp(G), f will be the unique function in L^ÇT) so that T(f)~ = Tf, for 
all integrable simple functions/. Finally, we writeC0Mp(G) = {TEMp(G)\ T 
is continuous and vanishes at °° on T}. 

Suppose that G is nondiscrete. It is well known that only entire functions 
operate on the Banach algebra M(G) [3, Chapter 6]. This result was strengthened 
in [1]. There, Igari showed that only entire functions operate from M(G) into 
the algebra Mp(G), 1 < p < <*>, p =£ 2. In [4], Varopoulos showed that for com­
pact G, only entire functions operate on M0(G). We have the following theo­
rems, which, in a sense, may be viewed as the L analogues of the aforementioned 
result of Varopoulos. 

THEOREM 1. Let 1 < p < <*> with p ^ 2. Suppose that F: [ - 1, 1] —-> C 
and that F operates on the algebra C0M (Tn). Then F coincides with an entire 
function in some neighborhood of 0. 

THEOREM 2. Let 1 < p < °° with p =£ 2, and let G denote one of the 
groups R" or Z". Suppose that F: [ - 1 , 1] —> C and that F operates on the 
algebra C0Mp(G ). Then F coincides with an entire function on [ - 1, 1]. 

These results complete the investigation begun by the author in [5]. We 
now indicate some of the ideas involved in the proof. 

Assume that G = T and 1 < p < 2. By standard arguments (see [1] and 
[3, Chapter 6]) we may assume that F(x) = S£= 1 akx

k for |x| < e. It then 
suffices to show that there exists j€ such that 

(!) \af\<Ce 10* 
for all ƒ > j € . This is accomplished by studying refinements of the multipliers 
considered in [5]. Corresponding to the sequence fy}, we construct measures 
{Xy}, X in M(J) so that for all ƒ 
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(2) Xj is real-valued and HtyL < 2%2- n ( / ) / 2 , 

(3) l \ l < X , 

(4) £ ak2"(/)fc/PVL >c{niil)2-ilp'\aj\. 

Here {«(ƒ)} is a sequence ot positive integers tending to infinity and 1/p + 
1/p' = 1. As in [5], the measures {X;.} and X are essentially obtained as 
"generalized Riesz products" of combinations of certain Rudin-Shapiro measures. 
Inequalities (4) is proved by carefully studying the combinatorial properties of these 
Rudin-Shapiro measures. Moreover, the special properties of Rudin-Shapiro poly­
nomials makes it possible, in essence, to "ignore" the term ^=f+ i ^2 w ^ f c / p Ay 
when estimating \af\. We now define U{ff} = {2n< >>/*>' X; */}}. Then U is a 
bounded operator on LpQ2)* We construct our basic multiplier Thy "cutting 
off' and "piecing together" the measures 2 n ( / ) / p ' X;. via the Littlewood-Paley 
theory (see [5] for details). The estimate (1) then follows by studying the 
multiplier F(T), and using the properties of {X;.}. This will prove Theorem 1 for 
the circle groups. 

Theorems 1 and 2 now follow by rather standard arguments for the cases 
G = ln or G = R". However, the case G = Zn (more particularly, if G = Z) is 
more difficult and requires some additional ideas. 

We prove the theorem for the integer group by constructing a multiplier 
S G C0Mp(R) so that S is real-valued, supp S C [0, 1], and so that the be­
havior of S near the origin reflects the behavior of our basic multiplier T near °°. 
The construction consists in combining the method outlined above, with a 
technique of Igari [2]. 

The proof is essentially in the same spirit as that indicated for G = T. 
However, the arguments are much more involved. In particular, we introduce a 
vector-valued analogue of the space BMO. This allows us to obtain sharp L 
estimates for the operators involved in our constructions. 

Detailed proofs of the ideas sketched here will appear in [6]. 
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