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In this note we announce theorems which classify simplicial (not necessarily 
combinatorial) triangulations of a given topological «-manifold M, n > 7 (> 6 if 
dM = 0 ) , in terms of homotopy classes of lifts of the classifying map r: M —• 
BTOP for the stable topological tangent bundle of M to a classifying space 
BTRIn which we introduce below. The (homotopic) fiber of the natural map 
ƒ: BTRIn —• BTOP is described in terms of certain groups of PL homology 3-
spheres. We also give necessary and sufficient conditions for a closed topological 
«-manifold M, n> 6, to possess a simplicial triangulation. 

The proofs of these results incorporate recent geometric results of F. Ancel 
and J. Cannon [1] , J. Cannon [2], R. D. Edwards [4] , and D. Galewski and R. 
Stern [5]. 

In [8], R. Kirby and L. Siebenmann show that in each dimension greater 
than four there exist closed topological manifolds which admit no piecewise 
linear manifold structure and hence cannot be triangulated as a combinatorial 
manifold. Also, R. D. Edwards [3] has recently shown that the double suspen­
sion of the Mazer homology 3-sphere is homeomorphic to Ss, thus showing that 
a simplicial triangulation of a topological manifold need not be combinatorial. 
But it is still unknown whether or not every topological manifold can be triangu­
lated as a simplical complex. 

Our classification theorems for simplicial triangulations on a given topologi­
cal manifold take the following forms: 

Let BTOP denote the classifying space for stable topological block bundles. 

THEOREM 1. There is a space BTRIn and a natural map BTRIn —• BTOP 
such that if M is a topological n-manifold, n > 7 (> 6 if dM = 0 ) and r: M —• 
BTOP classifies the stable topological tangent bundle of M, then there is a one-to-
one correspondence between the set of concordance classes of simplicial triangu­
lations of M and the set of vertical homotopy classes of lifts of r to BTRln. 
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The obvious relative versions of Theorem 1 also hold true. 

THEOREM 2. The fiber TOP/TRIn of BTRIn —* BTOP has only two non­

zero homotopy groups, namely ir3 and 7r4, and the following sequence is exact. 

0 —• TT4 —• ker(a: 6% —> Z2) —• 0lRI" —> TT3 —> 0. 

Here 6^ denotes the group of PL homology 3-spheres, modulo those which 
bound acyclic PL 4-manifolds, under the operation of connected sum; a: 9% —• 
Z2 is the Kervaire-Milnor-Rochlin map oc(H3) = I(H3)/8 mod 2, where I(H3) is 
the index of a parallelizable PL 4-manifold that H3 bounds; and B\RI* is the 
group of PL homology 3-spheres modulo those which bound acyclic homology 
4-manifolds W with W x Rn~4 a topological manifold, under the operation of 
connected sum. Note that if 2"~ 3 H3 is homeomorphic to SP, then H3 repre­
sents the zero element of d3

RIn-

THEOREM 3. (i) n3(TOP/TRIn)CZ2, 

(ii) n3(TOP/TRIn) = 0 if and only if there exists a PL homology 3-sphere 

H3 with a(H3) = 1 and the (n - 3)-suspension ofH3, Xn~3 H3, is homeomorphic 

toSn. 

(iii) n4(TOP/TRIn) = 0 if and only if every PL homology 3-sphere H3 with 

oc(H3) = 0 and which bounds an acyclic homology 4-manifold W with W x Rn~* 

a topological manifold, bounds an acyclic PL 4-manifold. 

THEOREM 4. There exists a PL homology 3-sphere H3 such that 

(i) a ( t f 3 ) = l , 
(ii) H3 # H3 bounds an acyclic PL 4-manifold, and 

(iii) Xn~3 H3 is homeomorphic to Sn. 

If and only if every closed topological n-manifold, n> 6, can be triangulated as 

a simplicial complex. 

REMARK. For M = 5 and M1 oriented, Siebenmann [10] has shown under 
conditions (i) and (iii) that M is simplicially triangulable. M. Scharlemann has 
pointed out that if M5 is unoriented, then (i), (iii) and the fact that H3 # H3 

bounds a contractible PL 4-manifold implies the result. For 6 < n < 8, Theorem 
4 was proven by M. Scharlemann [9], where in place of (ii) he has the orientabil-
ity condition that the integral Bockstein of the Kirby-Siebenmann obstruction to 
putting a PL structure on M is zero. T. Matumoto has claimed a version of Theo­
rem 4 under the stronger hypothesis that (iii) be replaced by the condition that 
Xn~4H3 is homeomorphic to Sn~x. 

We also investigate the question of whether a given topological fl-manifold, 
n > 6, can be triangulated as a simplicial homotopy manifold. For example; 

PROPOSITION 5. Suppose that every PL homotopy 3-sphere bounds a 

contractible PL 4-manifold. Then there is a one-to-one correspondence between 

the set of concordance classes of simplicial homotopy manifold triangulations of 
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a topological n-manifold M, n> 6, and concordance classes of PL manifold 

structures on M. 

PROPOSITION 6. Suppose there exists a bad counterexample to the 3 di­

mensional Poincaré conjecture; namely suppose there exists a PL homotopy 3-
sphere H3, with 

(i) a ( # 3 ) = l9and 
(ii) H3 # H3 bounds a contractible PL 4-manifold. 

Then every topological n-manifold, n> 6, can be triangulated as a simplicial 
homotopy manifold. 

Details of these and related results will appear in [6] and [7]. 
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