CLASSIFICATION OF SIMPLICIAL TRIANGULATIONS OF TOPOLOGICAL MANIFOLDS

BY DAVID E. GALEWSKI¹ AND RONALD J. STERN²

Communicated by S. Eilenberg, April 8, 1976

In this note we announce theorems which classify simplicial (not necessarily combinatorial) triangulations of a given topological n-manifold M, $n \ge 7$ (≥ 6 if $\partial M = \emptyset$), in terms of homotopy classes of lifts of the classifying map $\tau \colon M \longrightarrow BTOP$ for the stable topological tangent bundle of M to a classifying space $BTRI_n$ which we introduce below. The (homotopic) fiber of the natural map $j \colon BTRI_n \longrightarrow BTOP$ is described in terms of certain groups of PL homology 3-spheres. We also give necessary and sufficient conditions for a closed topological n-manifold M, $n \ge 6$, to possess a simplicial triangulation.

The proofs of these results incorporate recent geometric results of F. Ancel and J. Cannon [1], J. Cannon [2], R. D. Edwards [4], and D. Galewski and R. Stern [5].

In [8], R. Kirby and L. Siebenmann show that in each dimension greater than four there exist closed topological manifolds which admit no piecewise linear manifold structure and hence cannot be triangulated as a combinatorial manifold. Also, R. D. Edwards [3] has recently shown that the double suspension of the Mazer homology 3-sphere is homeomorphic to S^5 , thus showing that a simplicial triangulation of a topological manifold *need not* be combinatorial. But it is still unknown whether or not every topological manifold can be triangulated as a simplical complex.

Our classification theorems for simplicial triangulations on a given topological manifold take the following forms:

Let BTOP denote the classifying space for stable topological block bundles.

THEOREM 1. There is a space $BTRI_n$ and a natural map $BTRI_n \to BTOP$ such that if M is a topological n-manifold, $n \ge 7 \ (\ge 6$ if $\partial M = \emptyset)$ and $\tau \colon M \to BTOP$ classifies the stable topological tangent bundle of M, then there is a one-to-one correspondence between the set of concordance classes of simplicial triangulations of M and the set of vertical homotopy classes of lifts of τ to $BTRI_n$.

AMS (MOS) subject classifications (1970). Primary 57C15.

¹This research was supported in part by National Science Foundation grant GP29585-A4
²This research was supported in part by a Faculty Research Grant at the University of

Utah and by National Science Foundation grant MCS76-06393.

The obvious relative versions of Theorem 1 also hold true.

THEOREM 2. The fiber TOP/TRI_n of $BTRI_n \rightarrow BTOP$ has only two non-zero homotopy groups, namely π_3 and π_4 , and the following sequence is exact.

$$0 \longrightarrow \pi_4 \longrightarrow \ker(\alpha \colon \theta_3^H \longrightarrow Z_2) \longrightarrow \theta_3^{TRI_n} \longrightarrow \pi_3 \longrightarrow 0.$$

Here θ_3^H denotes the group of PL homology 3-spheres, modulo those which bound acyclic PL 4-manifolds, under the operation of connected sum; α : $\theta_3^H \longrightarrow Z_2$ is the Kervaire-Milnor-Rochlin map $\alpha(H^3) = I(H^3)/8 \mod 2$, where $I(H^3)$ is the index of a parallelizable PL 4-manifold that H^3 bounds; and $\theta_3^{TRI_n}$ is the group of PL homology 3-spheres modulo those which bound acyclic homology 4-manifolds W with $W \times R^{n-4}$ a topological manifold, under the operation of connected sum. Note that if Σ^{n-3} H^3 is homeomorphic to S^n , then H^3 represents the zero element of $\theta_3^{TRI_n}$.

Theorem 3. (i) $\pi_3(TOP/TRI_n) \subseteq Z_2$,

- (ii) $\pi_3(TOP/TRI_n) = 0$ if and only if there exists a PL homology 3-sphere H^3 with $\alpha(H^3) = 1$ and the (n-3)-suspension of H^3 , Σ^{n-3} H^3 , is homeomorphic to S^n .
- (iii) $\pi_4(TOP/TRI_n) = 0$ if and only if every PL homology 3-sphere H^3 with $\alpha(H^3) = 0$ and which bounds an acyclic homology 4-manifold W with $W \times R^{n-4}$ a topological manifold, bounds an acyclic PL 4-manifold.

THEOREM 4. There exists a PL homology 3-sphere H³ such that

- (i) $\alpha(H^3) = 1$,
- (ii) $H^3 \# H^3$ bounds an acyclic PL 4-manifold, and
- (iii) $\Sigma^{n-3} H^3$ is homeomorphic to S^n .

If and only if every closed topological n-manifold, $n \ge 6$, can be triangulated as a simplicial complex.

REMARK. For M=5 and M^n oriented, Siebenmann [10] has shown under conditions (i) and (iii) that M is simplicially triangulable. M. Scharlemann has pointed out that if M^5 is unoriented, then (i), (iii) and the fact that $H^3 \# H^3$ bounds a contractible PL 4-manifold implies the result. For $6 \le n \le 8$, Theorem 4 was proven by M. Scharlemann [9], where in place of (ii) he has the orientability condition that the integral Bockstein of the Kirby-Siebenmann obstruction to putting a PL structure on M is zero. T. Matumoto has claimed a version of Theorem 4 under the stronger hypothesis that (iii) be replaced by the condition that $\Sigma^{n-4}H^3$ is homeomorphic to S^{n-1} .

We also investigate the question of whether a given topological n-manifold, $n \ge 6$, can be triangulated as a simplicial homotopy manifold. For example;

PROPOSITION 5. Suppose that every PL homotopy 3-sphere bounds a contractible PL 4-manifold. Then there is a one-to-one correspondence between the set of concordance classes of simplicial homotopy manifold triangulations of

a topological n-manifold M, $n \ge 6$, and concordance classes of PL manifold structures on M.

PROPOSITION 6. Suppose there exists a bad counterexample to the 3 dimensional Poincaré conjecture; namely suppose there exists a PL homotopy 3-sphere H^3 , with

- (i) $\alpha(H^3) = 1$, and
- (ii) $H^3 \# H^3$ bounds a contractible PL 4-manifold.

Then every topological n-manifold, $n \ge 6$, can be triangulated as a simplicial homotopy manifold.

Details of these and related results will appear in [6] and [7].

REFERENCES

- 1. F. Ancel and J. W. Cannon, Any embedding of S^{n-1} in $S^n(n \ge 5)$ can be approximated by locally flat embeddings, Notices Amer. Math. Soc. 23 (1976), p. A-308. Abstract #732-G2.
 - 2. J. Cannon, Taming codimension one generalized manifolds (preprint).
- 3. R. D. Edwards, The double suspension of a certain homology 3-sphere is S⁵, Notices Amer. Math. Soc. 22 (1975), p. A-334. Abstract #75T-G33.
- 4. ——, The double suspension of PL homology n-spheres, Proc. Topology Conf. (Georgia, 1975).
- 5. D. Galewski and R. Stern. The relationship between homology and topological manifolds via homology transversality (preprint).
- 6. ———, Classification of simplicial triangulations of topological manifolds (preprint).
- 7. ———, Surgery on compact simplicially triangulated topological manifolds (preprint).
- 8. R. C. Kirby and L. C. Siebenmann, On the triangulation of manifolds and the Hauptvermutung, Bull. Amer. Math. Soc. 75 (1969), 742-749. MR 39 #3500.
- 9. M. Scharlemann, Simplicial triangulations of non-combinatorial manifolds of dimension less than nine, Inst. for Advanced Study, Princeton, N. J. (preprint).
- 10. L. C. Siebenmann, Are nontriangulable manifolds triangulable? Topology of Manifolds (Proc. Inst., Univ. of Georgia, Athens, Ga. 1969), (J. Cantrell and C. H. Edwards, Editors), Markham, Chicago, 1970, pp. 77-84. MR 42 #6837.

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF GEORGIA, ATHENS, GEORGIA 30601

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF UTAH, SALT LAKE CITY, UTAH 84112