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1. Introduction. Let X be a connected topological space, whose Sullivan-
de Rham minimal model, MOO, is finitely generated. Following Halperin [8], 
we shall denote the indecomposable quotient of M(X) by U^(X), and call it the 
pseudo-dual rational homotopy of X. If X is simply-connected, then IIJ (X) is 
naturally isomorphic to (irn(X) ® Q)*, for all n > 1. (See [4] and [8] for 
detailed treatment of II^ (X).) 

DEFINITION 1.1. If dimQU$(X) < °°, then we shall say that X has finite 
dimensional rational homotopy (FDRH), and we shall define the Euler-Poincare 
homotopy characteristic of Xto be x<*) = 2£=i(- l)"dim0Il£(X). 

In this note we announce some results, which relate U§(X) to U^(F)9 

where F is a component of the fixed point set of a torus group action on X. 
Further results and detailed proofs will appear in [2] and [3]. 

2. Results. Although more general conditions would suffice, we shall 
assume, for simplicity, throughout this section, that X is a compact topological 
manifold, that a torus T is acting on X locally smoothly (that is, with linear 
slices), and that the fixed point set, XT

9 is nonempty. Our first theorem is 
the following. 

THEOREM 2.1. If X has FDRH, and if F is a component of XT, then 
F has FDRH, and x*(F) = X^W- Furthermore, 

(0 £ dimö T\\n{F) < £ dimö n^tf); 

and 

(ü) f àimQuf+1 (F) < f dtaönj» + 1(*). 
«=o «=o * 

We also have the following generalization of Bredon's inequalities [5]. 

THEOREM 2.2. If Xhas FDRH, then, for alln>l, 

dimön£(Z0< f dimQIl» + 2k(X). 
fc=0 
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Our third theorem is a generalized Golber formula ([1] , [6], [7] and [9]). 
We shall assume now that X has FDRH, and that \\\n(X) = 0, for all n > 1. It 
follows that XK is connected, for any subtorus K Ç T. From Theorem 2.1 it 
follows also that nJw(X*) = 0, for all n > 1, and that XK has FDRH. With 
this in mind we make the following definition. 

DEFINITION 2.3. Suppose that U$(XK) has a basis (as a rational vector 
space) of elements with degrees 0Lt(K)9 1 < / < s. 

Set 

e(K) = I l (at(K) 4- l)(af(K) + 1). 
Ki<f<s 

IfK= M , so that XK = X, then set e(K) = e(jQ. 
The generalized Golber formula is as follows. 

THEOREM 2.4. 

e(X) -e(T)-Z [e(H) - e(T)] = £ [«<*) - * 7 ) - Z M # ) - e(T)}\ , 

w/zere S ^ rww5 over all subtori of T of corank one, 2,K runs over all subtori of 

T of corank two, and ^HDK runs over all subtori of T of corank one, which 

contain K. 

In [3], we obtain further formulae of this kind, and give a general solution 

to Problem 9 of [9, p. 148]. 

3. Method of proof. The following theorem is the main technical device 

which we use. 

THEOREM 3.1. If S is a commutative overring of the rational numbers, 

and if As is the category o f differential (Z/2Z)-graded algebras over S (with S 

having degree 0), then As is a closed model category. 

The proof of this theorem is a straightforward analogue of the proof of 
Theorem 4.3 of [4]. 

Theorem 3.1 allows us to reproduce a localization-cum-ideal theory for U§, 

analogous to that for equivariant cohomology produced by Chang and Skjelbred 
[6]. 
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