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for p > p0, but can diverge almost everywhere for p = p0. Again, for an L2 

function ƒ, the Fourier series with respect to a complete orthonormal system 
converges to ƒ in L2, and so if it converges almost everywhere it converges to 
ƒ. However, for p < 2, even for a complete bounded orthonormal system, the 
Fourier series of an Lp function can converge to some function other than ƒ; 
indeed, it is possible to rearrange it (or to take a subsequence of its partial 
sums) so that it converges to any measurable function we like, or to oo. 

The theory of trigonometric series has given us (for better or worse) many 
gifts, notably Dirichlet's concept of a function, the Riemann integral and the 
theory of sets. It remains to be seen whether the general theory of series of 
orthogonal functions will be as fruitful. Meanwhile we can take comfort from 
Hermann Weyl's dictum that "special problems in all their complexity con­
stitute the stock and core of mathematics." 

The book has not been published in Russian. Unfortunately the translation 
reads, in uncomfortably many places, like a translation: that is to say, too 
often for the reader's comfort it preserves Russian word order or sentence 
structure. 
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What does it mean to say that a completely regular, Hausdorff space X is 
realcompact? To Edwin Hewitt,, who introduced the class of realcompact 
spaces under the title g-spaces [18], it means that for every maximal ideal M 
in the ring C(X, R) of continuous real-valued functions on X, either M = {ƒ 
G C(X): f(p) = 0} for some/? 6 l o r the linearly ordered field C(X, R)/M 
is non-Archimedean. To a point-set topologist, it means that for some 
cardinal a the space X is homeomorphic with a closed subspace of the power 
space Ra [34], [9]. To a category-theorist, that X is an object in the epi-reflec-
tive hull generated in 5£t)ct) by R [16], [17]. To a topological linear space 
theorist, that C (X, R) is bornological in the compact-open topology [31], [32], 
[35], or that for every nontrivial multiplicative linear functional 0 on C(X) 
there isp G X such that $(ƒ) = ƒ(/?) [18], [8, Problem 3W(b)], [19, p. 170]. To 
a descriptive set theorist, that X is the intersection of Baire subsets of its 
Stone-Cech compactification fiX [24, Theorem 9], [33, Corollary 3.11]. To a 
uniform spaceman, that X is complete in the uniformity defined by C(X) 
[30], [18, p. 92], [34]. And so forth. The ubiquity with which the concept 
appears, and the elegance of the characterizations available in quite diverse 
contexts, justify both its introduction into the literature over 25 years ago and 
the present undertaking of a comprehensive survey. 

In his Introduction, Professor Weir sets forth briefly and to good effect the 
historical data which led him to adopt the name "Hewitt-Nachbin spaces" for 
the classes he studies here. It is an elementary courtesy due the author that 
today's remarks in review follow his lead in this respect, but I reserve the 
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right (and announce the intention) to return to former habits tomorrow. 
Indeed the term "realcompact", proposed (with a hyphen subsequently 
dropped) by Gillman [12] and adopted in his widely read textbook with 
Jerison [13], has become generally accepted. Satisfied and content in the 
familiarity of the status quo we may admire the courage of a crusader; but we 
applaud only rarely, and we follow more rarely still. 

An overview. Given a family S of completely regular Hausdorff spaces, the 
modern point-set topologist is likely to ask the following questions. 

(1) Can I define and consider the class SIS of spaces homeomorphic to a 
closed subspace of a product of elements of S ? Will not SI S be closed under 
products, and under passage from one of its elements to a closed subspace? 

(2) If X is a (not necessarily closed) subset of a product of elements of S, 
can I associate with X an "S -envelope" f$&X in SIS in which X is dense and 
S -embedded (in the sense that every continuous function ƒ: X —> E E S 
extends continuously to ƒ: /3&X -H> E)l If X E S, will I not have p&X = XI 
Is/?S(XX Y) - (1&X X fisYl 

(3) Does the class SIS admit alternative characterizations? Are there 
interesting related classes? 

(4) If ƒ is continuous from X0 onto XY and Xt E SIS (/ = 0, 1), is 
* , _ , € a S ? 

To oversimplify considerably: Weir's book has four chapters, each devoted 
to posing (more carefully and more fully than has been done above) and then 
answering one of the four sets of questions just listed. We comment briefly on 
these questions and Weir's treatment, beginning at the end and working 
forward. In what follows it is understood that all spaces considered are 
completely regular Hausdorff spaces and that S = (R), so that SIS is the 
class of Hewitt-Nachbin spaces. When convenient we write vX in place of 

(4) Since every discrete space whose cardinality is accessible from <o by the 
usual processes of cardinal arithmetic is a Hewitt-Nachbin space (Mackey 
[25]), the continuous image of a Hewitt-Nachbin space need not be a 
Hewitt-Nachbin space. Equally simple examples show that the class is not 
preserved by inverse images under continuous functions. Thus in seeking 
conditions under which the image or inverse image of a Hewitt-Nachbin 
space is again a Hewitt-Nachbin space, it is natural to consider either spaces 
that are "more than Hewitt-Nachbin" or functions that are "more than 
continuous". In Chapter 4, a strong and impressive contribution to the 
literature, Weir has assembled and juxtaposed a tasteful and complete collec­
tion of results (due to Blair, Dykes, Frolik, Isiwata, Mack, Mrowka, Tsai and 
others) concerning preservation and inverse-preservation of many classes of 
spaces of Hewitt-Nachbin type. This chapter is carefully organized and 
comprehensive, and it serves a function not served (so far as I am aware) by 
any competing survey of the subject. 

(3) Several alternative definitions, or characterizations, of Hewitt-Nachbin 
spaces are given in the first paragraph of this review. 

(2), (1) It was Tychonoff [38] who showed that a (completely regular, 
Hausdorff) space X can be embedded in [0, If, where a is the weight of X. 
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Cech [3] in effect credits Tychonoff with the statement that if <$ = 
C(X, [0, 1]) then the function e : X^ P = [0, i f defined by (ex)f « f(x) is a 
topological embedding, and Cech shows that eX is [0, l]-embedded in cl^eX. 
This space, which he denoted fiX, is the Stone-Cech compactification; Stone's 
construction [37], given simultaneously by a quite different method, should 
not concern us here. 

The Tychonoff-Cech device of embedding in a product in such a way that 
functions on the image extend (because they are essentially projections) has 
been used frequently since 1937. Hewitt [18] showed his (^-spaces to be 
homeomorphic with closed subspaces of the products Ra, and he constructed 
vX by analogy with fiX.x The proof of the adjoint functor theorem of Freyd 
[10], [11] achieves similar results in a setting of greater (indeed, maximal) 
generality; see also Kan [21], Bénabou [2], Mitchell [26] and Lawvere [23]. 
Better known to topologists are the more recent papers of Kennison [22], van 
der Slot [36], Herrlich [15] and Herrlich and van der Slot [17], in which 
(collectively) the adjoint functor theorem and its consequences are set forth in 
sufficient generality to handle any question likely to arouse the interest of the 
point-set topologist. Probably the earliest paper of this sort in general 
topology-containing (in different language) essentially all one needs to know 
about simply generated epi-reflective subcategories of £t)rf)-is Engelking and 
Mrowka [9]. This paper, which appeared just too late to have a substantial 
influence on [13], is a primary source for Weir. 

An overly enthusiastic view of the facts that the product of compact spaces 
is compact and the product of Hewitt-Nachbin spaces is a Hewitt-Nachbin 
space can lead to the belief that /? (X X Y) = /3X X pY and v(X X Y) = vX 
X vY for all spaces X and Y. The following pretty theorem of Glicksberg [14], 
whose proof is not included in the present work, shows that the former 
equality (which implies the latter) occurs infrequently: For infinite spaces X 
and 7, p(X X Y) = fiX X jiY if and only if X X Y is pseudocompact. 
Since the publication of Weir's book, Husek has verified a suspicion articu­
lated tentatively but inadequately over the years by various investigators 
admiring Glicksberg's result: there is no similarly elegant solution to the v 
problem. Specifically, Husek's beautiful paper [20] shows that if ® is a finitely 
productive class of Tychonoff spaces containing compacta and containing a 
pair <P, <2> of spaces such that v(P X Q)^vP XvQ, then there are no 
reflective subcategories 9t, @ of S£t)cï) with reflectors r, s such that for every 
J j E S w e have: v(X X Y)=vX XvYiî and only if r(XX Y) = s(XX Y). 

ll was informed by a letter from Professor Hewitt dated 24 May, 1966 that he "chose upsilon 
by some crude association with the word "unbounded", just as Cech probably chose p because 
he was thinking of bounded functions". The symbol v, though frequently miswritten v (nu) by 
Greekless authors and typesetters (for an early example of this phenomenon see Hewitt [19, p. 
178]), is by now time-tested and indeed universally accepted: clearly an excellent choice of 
notation. But at the risk of taking unfair advantage of Professor Hewitt, who does not have the 
opportunity to respond on this page, I respectfully take issue with his analysis of Cech's 
motivation. In the absence of compelling and specific information to the contrary, I suspect that 
Cech chose the symbol /? for its affinity with the word "bicompact", or in order to contrast with 
the notation <xX (used commonly, when X is locally compact but not compact, to denote the 
one-point compactification of Alexandroff (cf. [1])). Indeed it seems likely that if Cech had been 
led to consider with emphasis the bounded real-valued continuous functions on X, he might have 
continued next to the unbounded ones, thus perhaps constructing on his own an early version of 
Hewitt's space vX. 
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Weir's book, like the successful and widely consulted textbook [39] of his 
Carnegie-Mellon graduate-school colleague Russell C. Walker, is derived 
from a Doctor of Arts thesis presented to that university. Together the two 
books constitute proof of the integrity and worth of that particular program 
and, more generally, they testify that this much-maligned degree is potentially 
beneficial not only to individual recipients but also to a broad reading 
audience. Nevertheless a manuscript highly suitable as a graduate thesis may 
fail to meet some of the standards of accuracy and maturity normally 
associated with formal publication. Perhaps it is less appropriate to censure 
Weir for the several minor errors in fact or in judgement discussed in the list 
below than it is to congratulate him that the list is so short. 

(a) A perplexing misprint occurs on p. 68, where it is asserted that the space 
[0, fi] of ordinals less than or equal to the first uncountable ordinal is not a 
Hewitt-Nachbin space. In fact this space, like any well-ordered space with a 
greatest element, is compact (and a fortiori a Hewitt-Nachbin space). Presum­
ably reference is intended to the space [0, £2) of countable ordinals. The 
difficulty is compounded by the unfortunate definition 

(a, /?) = {JC: x > a} n {x: x < 0 + 1}, 

given on the same page. 
(b) The space [0, fi) is again subjected to rough handling (p. 152) in 

connection with the statement that its topology admits no countable basis. To 
go around by way of paracompactness and a theorem which discusses 
measurable cardinals, as Weir does, is just too devious: the space [0, ti) is, 
quite clearly, not separable, so it has no countable basis. 

(c) On p. 87, the assertion is made that a certain hypothesis in Corollary 
8.11 is so essential that it cannot be dropped. In fact, however, it is so 
inessential that Weir himself has dropped it; it does not appear. 

(d) The pattern of proof of the equivalences in Theorem 8.4 is as follows: 
(1)=>(2), (2)^(4), (4)^(3), (3)^(4), (3) =»(5), and (5)=*(1). There is a 
redundancy here. 

(e) The following sentence, quoted from p. 92, is brief and incomplete to 
the point of irresponsibility: "A celebrated unsolved problem is whether or 
not every cardinal is nonmeasurable." Interpreted kindly, the statement is 
probably correct: it is conceivable that someday someone will prove that 
there are no measurable cardinals.2 Contrary to the impression one gains 
from Weir's statement, however, a little something is known. Specifically, it is 
consistent with ZFC that every (infinite) cardinal is nonmeasurable: that is, 
the existence of a measurable cardinal cannot be proved in ZFC. Further, it 

2Out of respect for Weir as author, we here use the term "measurable" exactly as he does: A 
cardinal number a is measurable if there is on a a nonprincipal ultrafilter with the countable 
intersection property. According to this terminology, which is used also in [13], the cardinal co is 
not measurable, and any cardinal exceeding the least measurable cardinal is itself measurable. 
Many current authors, however, call cardinals with the property just described Ulam-measurable, 
reserving the term measurable for those cardinals a on which there is a nonprincipal «-complete 
ultrafilter (i.e., an ultrafilter/? such that Pi 3F e P whenever $ c p and |3F| < a). According to 
this terminology (and assuming, as is usual, the Axiom of Choice), the cardinal w is measurable 
and no successor cardinal is measurable. For basic facts and references concerning both kinds of 
cardinals, see for example [5, especially pp. 186-203] or [7]. 
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follows from the Incompleteness Theorem of Gödel (see for example Cohen 
[4, p. 45] or Crossley [6]) that even the consistency with ZFC of the statement 
that there is an infinite measurable cardinal cannot be shown in ZFC. In any 
event, most set theorists today are willing to assume the existence of large 
cardinal numbers with various exotic properties, including the property of 
measurability. 

(f) An interesting and crucial example of Mrowka [27], [28] is discussed (pp. 
189-191): The image of a Hewitt-Nachbin space under a perfect function 
need not be a Hewitt-Nachbin space. (A function ƒ from X onto Y is said to 
be perfect if ƒ is a closed, continuous function such that ƒ ~{({y}) is compact 
for each y E Y.) The construction of Mrowka's example and the verification 
of its properties is, shall we say, a 15-step procedure. It is annoying and 
aesthetically unsatisfactory that Weir offers the details of steps 1-6 and 8-15, 
but passes over step 7 with the statement "Mrowka then proves, using an 
additional lemma, that there exists a permutation m . . . ". A chain with a 
missing link is no chain at all; if a complete proof of Mrowka's result is 
unsuitable to the text, I should have preferred either a brief, informal 
description of the space in question or simply a reference to [27], [28]. 

(g) To ensure that Corollary 16.14 has content, it seems necessary to show 
by an example that the pre-image X under a perfect function ƒ of a 
pseudocompact space Y need not be pseudocompact. An example can be 
given whenever Y is a pseudocompact space with a closed, nonpseudocom-
pact subset A (such pairs are easily found). Let X be the "disjoint union" 
(A X {0}) u ( 7 X {1}), and set f (a, 0) - a,f(y9 1) = y. 

(h) On p. 29 we are told "Mrowka has shown . . . that strong zero-dimen­
sionality is preserved under products, but we omit that argument here". In 
fact the question is raised but not settled in the indicated paper of Mrowka 
[29], and it remains open still. 

(i) It is surely reasonable and honorable, when confronted with so careful 
and elegant a text as the book by Gillman and Jerison [13], to quote 
generously from it and to refer the reader frequently to it. Weir does this 
freely and openly. Through carelessness, however, he gives the impression 
that many of the results quoted from [13] (e.g., Urysohn's Lemma, several 
results essentially contained in Hewitt's paper [18]) originated in [13]. To 
avoid embarrassment all around, one wishes that Weir had developed two 
sorts of notation to be used when citing results from other sources-one to 
indicate simply that Weir had found the result there, the other to suggest 
where the result originated. 

The role of the bibliography, which contains 327 items, is not clear. Many 
of the items listed are not mentioned or cited in the text, and some even 
appear to be effectively disjoint from it. 

Finally, a few truly petty questions and criticisms. (1) There is a tendency 
to undefined, unnecessary adjectives: "A normal base on X is a distinguished 
collection [of subsets of X]" such tha t . . . (p. 57); "Let R be an algebraic 
ring with identity" (p. 59). The fully educated reader will know, instinctively 
or through experience, that "distinguished" and "algebraic" are, in these 
contexts, meaningless words introduced only in the interest of poetic rhythm; 
but the ignorant reader (e.g., this reviewer) will waste time thumbing, first 
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backward into the text, next forward into the index, looking for the technical 
definitions. (2) To help his reader, Weir notes (p. 49) that "There are several 
good references for the usual concept of a filter such as the 1966 English 
version of N. Bourbaki . . . ". Are we to infer that the concept is not well 
handled in the earlier French version? (3) Theorem 4.2 is attributed to 
Mrowka and Engelking, 4.3 to Engelking and Mrowka. If there is a story 
behind the distinction, I should like to know it. 

In summary. The class of Hewitt-Nachbin spaces has won the respectful 
interest of many point-set topologists in the past quarter-century, and the 
spaces themselves have served to clarify and to solve problems in a variety of 
mathematical disciplines. Professor Weir and his mathematical advisors cor­
rectly defined and identified a substantial topic ripe for summary in mono­
graph form, and the present volume responds usefully to a gap in the 
literature. 

Whether this is the definitive treatment of the subject is difficult to guess. 
Cech's fi and Hewitt's v are now routinely perceived as specific instances of a 
categorical construction widely applicable, and it seems likely that they will in 
the future recede to the role of interesting illustrative examples. If this occurs 
there will be no demand for a more complete and coherently crafted treatise 
which accomplishes for C(X) and vX all that Gillman and Jerison [13] and 
Walker [39] have achieved for C*(X) and fiX, and Weir's work will stand as 
the last and the best word available. In any event the international topologi­
cal community owes Weir a vote of thanks: He has demonstrated the utility 
and the wide applicability of this concept in language susceptible to study by 
the mathematical layman and he has recorded sufficiently many deep and 
technical theorems and proofs to make his book a valuable-indeed, indis­
pensable-companion to the active researcher. 
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