
842 BOOK REVIEWS 

instance the Lévy-Khintchin representation formula for negative definite 
functions is proved only in the symmetrical case (following Harzallah's 
method). There are other examples. And it is still a challenge for an analyst to 
discover a nonprobabilistic proof of the most difficult part of the Port and 
Stone theorem in the unsymmetrical case (the real case is much simpler and 
had been solved before by Beurling and myself). 

The book is clear. Each of the 18 paragraphs starts with a short outline and 
finishes with a sufficient, but not exhaustive, bibliography. It is written with 
great care and there are very few misprints. Its reading is easy and enjoyable. 
Some straightforward proofs are left as exercises to the reader, even when the 
corresponding results are subsequently used. Several simple and illuminating 
examples are thoroughly detailed. To sum up: a highly recommendable 
introduction to the general potential theory from an "analytic" point of view. 
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Stochastic differential equations and applications, Vol. 1, by Avner Friedman, 
Academic Press, New York, San Francisco, London, 1975, xiii 4- 231 pp., 
$24.50. Vol. 2, by Avner Friedman, Academic Press, New York, San Francisco, 
London, 1976, xiii + 299 pp., $32.50. 

A diffusion process with values in R defined for some interval [0, T] of time 
is a Markov process with R for its state space which has almost surely 
continuous trajectories. The conditional distribution of an infinitesimal incre­
ment x(t + h) — x(t) of such a process given the past history {x(s)} for 0 < s 
< / is supposed to be approximately Gaussian with mean hb(t,x(t)) and 
covariance ha(t,x(t)). For each t and x, b(t,x) is a vector with components 
{b'• (/,*)} and a(t, x) is a symmetric positive semidefinite matrix with entries 
{aM,x)}. Although such a description may not hold for every diffusion 
process, one can describe a wide class of such processes in terms of their 
associated coefficients {atj(t,x)} and {bAt,x)}. These are often referred to as 
diffusion and drift coefficients. 

The problem then is to start with some given [aM.x)} and {b(t,x)} and 
then show that under suitable regularity conditions on a and b there 
corresponds to it a unique diffusion process. Since a Markov process is fully 
determined by its transition probabilities it is enough to construct the 
transition probability function p(s, x, /, dy) from the coefficients a and b. One 
way of doing this is to look at some associated partial differential equations 
known as Kolmogorov's backward equations. 

Let us fix a t in 0 < t < T. For some fixed function f(y) on Rd one 
considers the function u(s, x) defined by 

(1) u(s,x) = Jf(y)p(s,x,t,dy) for 0 < s < /. 

Assuming that the function u(s,x) is smooth, one shows that it satisfies the 
differential equation 
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(2) Ts+ 2 2 a ( / ( j ' x ) 9 3 ^ ; . + 2 è A * ) ^ = ° 

with the boundary condition 

(3) lim u(s,x) = fix). 

If the differential equation (2) can be solved with the boundary condition (3) 
for a sufficiently large class of functions ƒ(•), then one can show that the 
solution u(s,x) does have a representation (1) which yields the transition 
probability function pis, x, t, dy). One can then go on to show that it has the 
properties expected of it so that it can serve as the transition probability 
function of a diffusion process. Such a method, of course, reduces the problem 
of constructing a diffusion process for specified coefficients to one of solving 
the differential equation (2). There are some slight variations possible in that-
one can consider related differential equations instead of (2). In order to study 
how the properties of [a, b] affect the behaviour of the process one has to use 
the differential equation (2), determine properties of u(s, x) and then translate 
them into properties of the process. 

A direct method of constructing the process was introduced by Itô. Let us 
take a dx d matrix a(7, x) such that o(t, x)o* it, x) = ait, x) [ here denotes the 
transpose]. One way of generating a Gaussian random vector with mean hb 
and covariance ha is to take a Gaussian random vector £(/*) with mean 0 and 
covariance hi and then consider o£(h) + hb. For £(A) one can take an 
increment of a d-dimensional Brownian motion and let £(h) = fi(t + h) 
— Pit). One can then try to solve 

x(t + h) - x{t) ~ o(t9x(t))(P(t + h) - P(t)) + hb(t,x(t)). 

This can be abbreviated as 

(4) dx(t) = a{t, xit) ) dpit) + bit, xQ) ) dt. 

Actually one looks at the associated stochastic integral equation 

(5) xit) = x0 + f ais,xis))dpis) + f bis,xis))ds 

for tQ < t < T. 
There are problems defining these integrals because /?(/) is not of bounded 

variation in t. Itô developed the theory of stochastic integrals to give meaning 
to the integrals of the type that occur in (5). He then proved that the stochastic 
integral equation (5) has a unique solution provided a and b are Lipschitz 
continuous in x and grow at most linearly in x [uniformly in t]. He also showed 
that for each fixed x0 and t0 the solution X t it) of (5) is a Markov process 
with continuous trajectories. Moreover the transition probability function of 
the process, pis, x, t,A) is given by 

pis,x,t,A) = Prob [Xsxit) G A]. 
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Here Prob refers to Brownian motion probability and one views Xs x(t) as a 
functional of /?(•). Now one has a purely probabilistic method of constructing 
the process from the coefficients. The connection with partial differential 
equations is still present in the form of Itô's formula which prescribes the 
chain rule for stochastic differentials. This formula states that if u{t,x) is 
smooth and x(t) satisfies (4) then 

(6) du{t,x{t)) = g(t,x(t))dt + G(t,x(t)) • dftt) 

where 

(7) g(t,x) = 97 + J 2 «vM^^ + 2 bj(t,x)^ 

and 

(8) G(t9x) = (Vw o)(t,x). 

The term with the second derivatives on the right side of (7) is the additional 
term not found in the usual chain rule of ordinary calculus. The relation (6) 
is, of course, established rigorously in its integrated version. 

One consequence of (6) is that 

(9) u(t,x{i))- f g(s,x(s))ds 

is a martingale. If x{i) is the solution starting from x0 at time t0 then 

(10) u(t0,x0) = E\u(t,x(t)) - ft g(s,x(s))ds\. 

If g is identically zero this provides the connection with Kolmogorov's 
backward equation. We have here an advantage in that we can use stopping 
times in the martingale (9). This enables one to solve the backward equation 
in suitable regions with boundary conditions. 

One can now study the properties of the diffusion process directly by the 
equation (5). They have consequences for the solutions of the differential 
equation (2). One can use suitable test functions u(s,x) and use (10) to deduce 
properties of the process. In fact one can go back and forth and use techniques 
from partial differential equations and stochastic differential equations to 
obtain properties of solutions of either. 

This is the central theme of these two volumes where the relation is 
systematically used to establish results concerning solutions of partial differ­
ential equations and stochastic differential equations. We will now describe 
the contents of the two volumes. 

Volume I has Chapters 1 through 9 and Volume II, Chapters 10 through 17. 
Chapters 1-5 are standard material. Some of the topics covered are the 
following: basic notions in stochastic processes, Markov processes and 
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martingales, Brownian motion and its properties, stochastic integrals, exist­
ence and uniqueness of solutions of stochastic differential equations, Ito's 
method for constructing diffusions corresponding to given coefficients, Ito's 
formula. 

Chapters 6, 10 and 15 deal mostly with partial differential equations. 
Chapters 6 and 10 deal with the elliptic case, i.e. when a is positive definite. 
Chapter 15 deals with the general case. Properties of solutions of the backward 
and other related equations, and the transition probability p(s, x, t, dy) are 
established. Some times another text is referred to for the details of the proof. 
These results are used repeatedly in the book. In Chapter 6 a representation 
similar to (10) of the solution of the differential equation generalizing the 
backward equation is derived. In Chapter 7 the mutual absolute continuity of 
processes corresponding to the same diffusion coefficient, but different drifts, 
is established and the Radon-Nikodym derivative is computed. 

Chapter 8 studies the behaviour of the solution of (5) for large / [one takes 
T = oo]. The asymptotic behaviour of £lU(f)ll for large t is investigated in 
terms of the asymptotic behaviour of the coefficients in t and x. 

The remaining chapters, except the last two, deal exclusively with the 
homogeneous case, i.e. when the coefficients do not depend explicitly on the 
time variable s. The transition probability p(s, x, t, dy) is, in this case, of the 
form p(t - s, x, dy) with a possible density (under additional assumptions) 
p(t,x,y). Chapter 9 deals with the question of the recurrence or transience of 
the process in terms of the behaviour of the coefficients for large x. The 
methods are precise enough to distinguish between dimensions. Chapter 11 
studies the question of when a diffusion in Rd will avoid with probability one 
sets of lower dimensions. The common method in Chapters 8, 9 and 11 is to 
construct suitable test functions and use relation (9) or its analog. 

Chapters 12 and 13 treat the case when the diffusion coefficients could 
conceivably degenerate near the boundary of a region G. Then the process 
starting in G could either reach the boundary in a finite time, or approach a 
definite point on the boundary as t -> oo or spiral towards the boundary. The 
precise behaviour is studied in Chapter 12 and then is used in Chapter 13 to 
study Dirichlet type problems involving the basic operator 

The results are more detailed when d = 2. 
Chapter 14 is concerned with the behaviour as e —» 0 of the process 

corresponding to [ea,£]. The process approaches the deterministic process 
corresponding to [0,6]. Probabilities of sets of trajectories away from the 
limiting deterministic one will go to zero. The precise exponential rate of decay 
as e -» 0 is computed. This is used to study the behaviour of the transition 
probability density pe(t,x,y) of the process and the behaviour of solutions of 
the Dirichlet problem 
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u{x) = f(x) on 5G 
as e —» 0. Of course the main interest is when the drift term is pointing inward 
at the boundary of G. These methods are also used to study the asymptotic 
behaviour of the first eigenvalue of the operator in the above equation in the 
region G as e —> 0. 

Chapters 16 and 17 again deal with the inhomogeneous case. They are 
concerned with some optimization and minimax problems. In Chapter 16 a 
suitable functional of stopping times is to be optimized over all stopping times. 
A description of the optimal stopping time is given in terms of solutions of 
certain variational inequalities. When it is a minimax type problem involving 
two stopping times, existence of a saddle point is proved and a description of 
it is given. In Chapter 17 the drift coefficients [bÂt.x)} depend on parameters 
which can be controlled by different players. The question of existence of a 
saddle point is studied for the resulting stochastic differential game. 

The methods use the theory of quasilinear parabolic differential equations. 
The volumes cover a wide variety of results proved under varying assump­

tions. It may sometimes be hard for a nonexpert to get a feeling for the 
conditions in terms of their role in establishing the results. There are some 
misprints, on occasion even in the statement of the theorems. 

These volumes contain a considerable amount of detailed information that 
is quite important in the study of diffusion processes. The methods should 
prove useful in studying other problems as well. There are a lot of exercises to 
make the reader familiar with the ideas developed in the text. Complete 
references are given to other related works, where some of the material can be 
found. Most of the results have been obtained by the author himself in recent 
years. 

S. R. S. VARADHAN 
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Sieve methods, by H. H. Halberstam and H.-E. Richert, Academic Press, 
London, 1974, xiii + 364 pp., $26.00. 

The modern theory of sieve method has developed gradually, with fits and 
starts, over the past sixty years. From the outset the literature was hard to 
read because of the complicated nature of the arguments, while in recent 
times many of the most important results have remained unpublished, making 
it almost impossible to be well informed. Moreover, the literature has become 
tangled, and fragmented by a lack of unifying perspective. Expository 
accounts of the subject have usually been restricted to specific aspects, and in 
many cases even these have made difficult reading. An exception to this is 
found in Halberstam and Roth [6, Chapter 4], where the general nature and 


