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variation. Itô's definition is obtained as a limit of step function approxima­
tions which works when (i) ƒ is 95 X <$ measurable; (ii) for each / G [a, b], 
f(t) G L2(fi, P) and fb

aE(\f(t)\2) dt < oo; (iii) for each t G [a, b]9 ƒ(*, • ) is 
measurable ^(t), the a-field generated by {B(s\ s < t}. Note that condition 
(ii) restricts the average size of | / ( 0 | a n d (n0 s a v s that the dependence of 
ƒ(/, co) on co is restricted to information about the past and present values of 
B (s, co). This chapter does no more than give a taste of a large subject with 
important applications. An interested reader would go on to consult the book 
by McKean [4]. 

The reviewer enjoyed his commision to read the book. He suspects that the 
book will have limited value as a reference work because no topic is pushed 
very far. It does have a good selection of examples worked out in the text as 
well as problems at the end of each chapter, which are provided with outline 
solutions. This means that a competent graduate student or an analyst 
unfamiliar with stochastic processes would profit greatly by careful study of 
the book. It would make a good text for an advanced graduate course 
provided the lecturer was satisfied with the topics selected. The authors have 
provided a valuable new perspective on a variety of important analytic tools 
used for the study of stochastic processes. 
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"This book is an exposition of elementary algebraic topology from the 
point of view of a homotopy theorist." It is with this sentence that the Preface 
to Brayton Gray's book begins, so perhaps we would be well advised to learn 
something of the homotopy theorist's point of view before examining the 
contents of the book itself. 

In a vague sense homotopy theory studies properties of topological spaces 
that remain invariant under a continuous deformation. The achievements of 
the theory stem from the fact that so many seemingly rigid problems are 
really homotopy theoretic in nature. 

Around the turn of the century, during the formative period of algebraic 
topology, Poincaré introduced [9] (among other things) the homology 
(groups) of a polyhedron. A polyhedron is a configuration of basic convex 
sets called simplexes, and it was from the combinatorial properties of the 
configuration that the homology of a polyhedron was defined. It then became 
essential to demonstrate that these combinatorially defined invariants were in 
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fact independent of the particular combinatorial structure and depended only 
on the topological type of the polyhedron; that is homeomorphic polyhedra 
should have isomorphic homology. This problem gave rise to the Haupt-
vermutung (fundamental hypothesis): homeomorphic polyhedra admit iso­
morphic combinatorial structures. This is true for polyhedra of dimension at 
most three, and false in every dimension greater than four [1], [2]. It is true for 
simply connected combinatorial manifolds of dimension at least six, [3] (more 
than this is known but not germaine here) but certainly was not the means 
whereby the topological invariance of homology was established. 

It was Alexander [4] who proved the topological invariance of homology, 
and this he did in a really suprising way. Let us say that two maps (a map is a 
continuous function) ƒ, g: X -> Y are homotopic iff there is a continuous 
family of maps cpt: X -^ 7, 0 < t < 1, with cp0 = ƒ and q)x = g, in which case 
we write ƒ ~ g. It is easily verified that ~ is an equivalence relation, so it is 
natural to say a map ƒ : X —> Y is a homotopy equivalence iff there exists a map 
g: Y -> X such that gf ~ 1^ and f g — 1 ^. If there is a homotopy equivalence 
X -+ Y we say that X and Y have the same homotopy type; homeomorphic 
spaces are clearly of the same homotopy type. What Alexander proved was 
that polyhedra of the same homotopy type had isomorphic homology. 
Thereby not only establishing the topological invariance of homology, but 
more importantly both generalizing and clarifying (a not too common simul­
taneous occurrence!) the Hauptvermutung by establishing homotopy invari­
ance as the key property of homology. From that day forward the basic 
functors of algebraic topology have been those that are homotopy type 
invariants. 

Perhaps the oldest and most basic such functor is the fundamental group 
7TX(X, x0) of a topological space X with basepoint x0 G X. The higher homo­
topy groups 7Tn (X, x0), n > 2, were originally dismissed as being of no 
interest, since unlike the fundamental group they were always abelian. How­
ever Hopf's startling discovery [6] that TT3(S

2, * ) > Z (in particular that there 
is a map h: (S3, * )-*(S2, * ) that is not homotopic to the constant map to 
the basepoint) and Freudenthal's theorem that 7rn + k(S

n, * ) does not depend 
on n for n > k, revived interest in these groups. Despite the efforts of 
numerous workers, very little more was discovered about these groups until 
Serre [10] reunited the divergent developments of homotopy and homology 
and generated the extraordinary growth of algebraic topology during the past 
25 years. 

What distinguishes the homotopy theorist's viewpoint is the basic fact that 
all functors should be homotopy invariants by their very definition. Thus the 
fundamental theorem from which all else flows is the homotopy excision 
theorem. Once this is established, various important exact sequences and the 
Freudenthal suspension theorem quickly follow and homology/cohomology 
can be introduced as homotopy classes of maps into specially chosen spaces. 
By contrast, in a classical treatment of basic algebraic topology, exactness 
and computabihty for polyhedra of the homology functors are built into the 
definitions, and it is the homotopy invariance that is hard to establish. The 
Freudenthal suspension theorem, homotopy excision theorem etc., if treated 
at all, are deduced from the Serre exact sequence of a fibre space and the 
Whitehead theorem. 
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To motivate the study of homotopy invariant functors, Gray's book begins 
with some classical problems that are then reduced to homotopy theory. For 
example, if Bn c Rw is the unit ball {x G R"| \\x\\ < 1} it is required to 
determine if there exists a map ƒ: Bn ±^> without fixed points, that is, with 
f(x) 7̂  x \fx E Bn. Through a sequence of elementary deductions this is 
reduced to determining if irn_l(S

n~l, * ) = 0 or not, and the book proper 
begins naturally enough with the study of the fundamental group. Covering 
spaces are introduced as one means of computing these groups. The treat­
ment of covering spaces is rather brisk, and the basic existence question is not 
considered at all. It is in this section (§7) that one meets Seminar Problems 
for the first time (though in later sections this nicety between seminar 
problems and exercises is not maintained; and some of the exercises are 
ridiculously hard). Here they consist of some quick definitions, and inap­
propriate reference to the literature, and a suggestion that the reader delve 
into the basic existence question. This is a rather unfortunate omission as the 
Galois correspondence between coverings of a (nice) space X and subgroups 
of the fundamental group irX(X; x0) is a beautiful example of a homotopy 
theoretic solution to a classification problem. Though such completeness of 
classification is seldom, if ever, achieved it serves well as a model for many 
similar phenomena. 

After discussing track groups (this is done in (9.2) and though track groups 
figures in the title of the chapter, nowhere can I actually find a definition of 
track groups) and the higher homotopy groups, we come to what might best 
be called the fundamental theorem of homotopy theory, namely the theorem 
of Blakers and Massey [2]: If [X; Xv X2] is an excisive triad, and the pair (Xx, 
Xx n X2) is n - 1 connected while (X2, Xx n X2) is m - 1 connected, then 
the natural map 

i^7rr(Xx,xxnX2;*)^TTr(X,x2;*) 

is an isomorphism for r < m + n — 2, and surjective for r — m + n — 2. A 
first approximation to this theorem is given in §13 where the basic notion of 
attaching a cell is introduced, and the general formulation is to be found 
three sections later. These three sections and an appendix contain a great 
wealth of material beautifully expounded. Here one finds the basic construc­
tions of homotopy theory; mapping cones, mapping cylinders etc., the homo­
topy theory of cw complexes, culminating in the Blakers-Massey theorem, 
which are then applied to solve the classical problems (is there a fixed point 
free self map of the «-ball, etc.), derive the Freudenthal and Hopf theorems 
and numerous other important results. This brings to a close what might be 
considered as the first, or classical homotopy theory, portion of the book. 

Lest one come away with the impression (after all 16 sections have gone 
by) that nothing has happened for hundreds of pages let it be noted that §16 
ends on page 156, and in addition to the fundamental theorems of homotopy 
theory, fibre bundles and simplicial complexes have been introduced, and 
some of their elementary properties established. 

Now begins the second theme of the book, devoted to the introduction of 
homology and cohomology theories. Historically, as already remarked, ho­
mology and cohomology were first defined for polyhedra by an explicit 
algebraic construction depending on the combinatorial decomposition of the 
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polyhedron. The question of the topological invariance of these objects was 
cloudy and difficult. Gray's approach is by and large dual (speaking of which, 
the treatment of Poincaré duality is of such generality as to incompass 
Spanier-Whitehead duality and perhaps even Ekmann-Hilton duality). A 
functor from spaces to groups is introduced which by its very definition is 
homotopy invariant, and on the family polyhedra it is verified that the 
functor is computable by a combinatorial formula. Thus Moore spaces, 
Eilenberg-Mac Lane spaces and Postnikov towers are introduced, followed 
by spectra and homology and cohomology theories with coefficients in a 
spectrum. This awesome generality may appal some classicists, but it is well 
done, and I doubt anymore confusing than the mass of indices, subscripts 
and multiple summation formulae one subjects students to in a classical 
treatment of simplicial homology. The additive properties of homology are 
brought to a close with a proof of the Hurewicz theorem. This is followed by 
a long section (§24) on multiplicative structures, in which one will (at least I 
think one will) find every conceivable pairing, associativity and commutativ-
ity formula one could want. One will also find (p. 231) what is probably one 
of the largest commutative diagrams ever to reach print (containing several 
misprints, the W in the 2nd column should be Y and the 2nd E in the last 
entry an F) from which the various multiplicative structures are defined. I 
must confess I found this less than edifying. Another rather extraordinary 
commuting diagram appears in the next section (p. 249) where much of the 
multiplicativity done for spectra is there translated to the language of chain 
complexes, and which culminates with the classical Künneth and Universal 
coefficient theorems. 

The remaining sections treat Poincaré duality (§26), cohomology opera­
tions (§§27, 28), K theory and cobordism theory. The treatment of cohomol­
ogy operations is particularly nice, and there is a hard to decipher table of 
Adem relations for SqaSqb, a < 2b < 12, at the end of the book. The 
chapters on K theory and cobordism theory are very abbreviated and sketchy, 
and the space they occupy could have been better used to fill in some of the 
details relegated to the exercises in earlier chapters. They also contain a 
serious (though common) misstatement of the structure of the complex 
cobordism ring: the complex projective spaces are fine polynomial generators 
over the rationals, but they simply will not do over the integers. It is 
regrettable that these pages were not used earlier in the book to motivate and 
smooth the introduction of spectra. The Freudenthal suspension theorem 
shows that the conditional exactness of the homotopy Mayer-Vietoris 
sequence can be replaced by a long exact sequence if one passes to the 
suspension category. The transition to naive spectra is then almost painless. 

Throughout the book the exposition is good, with many nice and interest­
ing proofs for what are often musty old theorems. The level of generality 
employed is appropriate to the material presented, is not overdone and 
bogged down in an overly complex notation (except perhaps the chapters on 
products where it seems unavoidable), and there is an excellent index of 
symbols which is a great aid in using the book as a reference. The early part 
of the book is particularly well motivated, but off towards the middle of the 
book, new concepts are introduced without any clear explanation of why. 
This is a typical failing of text books: to suppose that after a while the 
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material motivates itself. A more serious objection, particularly for one 
contemplating self study or using the book by itself in a course, are the rather 
large number of results relegated to the exercises in section k, only to 
resurface as essential to the proof of a theorem in section n + k, where n + k 
is often in the stable range, i.e., n > k. 

Nevertheless, Gray's book provides an elegant view of basic algebraic 
topology contrasting very nicely with the classical viewpoint of Eilenberg-
Steenrod [4], and I for one feel that the two together provide a superb basis 
for either a course or self study. 

For example the first 16 sections of G could be profitably followed by the 
Introduction and Chapter I of E-S. Motivation for the axioms can be found 
by passing to the stable range on the homotopy groups functors to make 
conditional theorems (homotopy excision, Freudenthal, etc.) unconditional; 
or by introducing manifolds and de Rham theory as for example in [11]. Then 
back to G for §§17-20 followed by E-S II-IV, XI whence back to G for 
§§21-25, at which point a very solid foundation for further study in algebraic 
topology will have been laid down. 

In recent years many introductory algebraic topology textbooks have 
become available. In comparing Gray's book to these it comes off very well 
indeed. It does not get overly involved in definitions of polyhedra, and/or 
complexes, fibrings/cofibrings, or local topological properties. It certainly is 
not overlong, and does have a good index of notation. It is written well 
enough that most reasonably advanced students should be able to open it 
anywhere, and with a minimum of cross references start having it make good 
sense inside of 15 minutes. In short, it is an excellent book. 
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