THEORY OF ANNIHILATION GAMES

BY A. S. FRAENKEL AND Y. YESHA
Communicated by John L. Kelley, December 23, 1975

Throughout, $R=(V(R), E(R))$ is a finite loopless digraph with vertex set $V(R)$ and edge set $E(R) \subset V(R) \times V(R)$, which may contain cycles. Let $F(u)=$ $\{v \in V(R):(u, v) \in E(R)\}, Z=$ nonnegative integers, $G F(2)^{n}=$ the n-fold cartesian product of $G F(2)$.

Put any number of stones on distinct vertices of R. Two players play alternately. Each player at his turn moves one stone from a vertex u to some $v \in$ $F(u)$. If v was occupied, both stones get removed (annihilation). The player making the last move wins. If there is no last move, the game is a tie.

Such an annihilation game belongs to a large class of combinatorial games discussed in [1], [3], which are analyzable by the Generalized Sprague-Grundy Function (GSG-function) $G: V(R) \longrightarrow Z \cup\{\infty\}$ [1], [2], [3] with associated counter function $c: V^{f}(R) \longrightarrow Z$, where $V^{f}(R)=\{u \in V(R): G(u)<\infty\}$ [2]. Here R is the game-graph of the game.

Our main result is the construction of a complete strategy for the game, which is polynomial in $n=|V(R)|$.

Let $C(R)$ be the game-graph of the annihilation game on R, also called the contrajunctive compound of R. If $V(R)=\left\{u_{1}, \ldots, u_{n}\right\}$, the vertices of $V(C(R))\left(=\right.$ game positions) constitute the set of all n-tuples $\bar{u}=\left(\alpha_{1}, \ldots, \alpha_{n}\right)$ over $G F(2)$, where $\alpha_{i}=1$ if and only if a stone is on u_{i}. Also $(\bar{u}, \bar{v}) \subset E(C(R))$ if and only if there is a move from \bar{u} to \bar{v}. Thus $V(C(R))$ is identical with the linear space $G F(2)^{n}$ under the operation \oplus, Σ^{\prime} of Nim-sum (below: Generalized Nim-sum [1], [3]).

Lemma 1. Let

$$
C^{f}(R)=\{\bar{u} \in V(C(R)): G(\bar{u})<\infty\}, \quad C_{i}(R)=\{\bar{u} \in V(C(R)): G(\bar{u})=i<\infty\} .
$$

Then
(i) $C^{f}(R)$ is a linear subspace of $V(C(R))$.
(ii) G is a homomorphism from $C^{f}(R)$ onto $G F(2)^{t}$ with kernel $C_{0}(R)$ $\left(t=O\left(\log _{2} n\right)\right)$. In fact,

$$
\mathrm{G}(\bar{u})<\infty \Rightarrow G(\bar{u} \oplus \bar{v})=G(\bar{u}) \oplus G(\bar{v}) .
$$

(iii) $\left\{C_{i}(R): 0 \leqslant i<2^{t}\right\}=C^{f}(R) / C_{0}(R)$.

Let $L_{i}^{k}(R)=\left\{\bar{u} \in C_{i}(R):|\bar{u}|=k\right\}, L F^{k}(R)=\left\{\bar{u} \in C^{f}(R):|\bar{u}|=k\right\}$, $\mathcal{P}(S)=$ linear span of $S, \mathfrak{S}_{0}(R)=L_{0}^{4}(R) \cup L_{0}^{2}(R) \cup L_{0}^{1}(R), \Im^{f}(R)=\Im_{0}(R) \cup$ $L F^{2}(R)$.

Lemma 2. (i) $C_{0}(R)=\mathbb{Q}\left(\mathfrak{S}_{0}(R)\right)$.
(ii) $C^{f}(R)=? \mathfrak{P}\left(\Im^{f}(R)\right)$.
(iii) There exists a basis $\beta^{f}=\left(\bar{u}_{1}, \ldots, \bar{u}_{m}, \bar{v}_{1}, \ldots, \bar{v}_{t}\right)$ for $C^{f}(R)$ such that $\beta_{0}=\left(\bar{u}_{1}, \ldots, \bar{u}_{m}\right)$ is a basis of $C_{0}(R)$ and $\bar{v}_{i} \in L_{j(i)}^{2}(R)$, where $j(i)=2^{i-1}$ $(1 \leqslant i \leqslant t)$.

Note. For $m \geqslant 0$, denote by $C^{(m)}(R)$ the subgraph of $C(R)$ with vertices \bar{u} satisfying $|\bar{u}| \leqslant m$. Then $C^{(m)}(R)$ has $O\left(n^{m}\right)$ vertices, and $\bar{u} \in V\left(C^{(m)}(R)\right) \Rightarrow$ $F(\bar{u}) \subset V\left(C^{(m)}(R)\right)$. Hence G on $C^{(m)}(R)$ can be computed from $C^{(m)}(R)$ alone. In particular, $\mathfrak{S}^{f}(R) \subset V\left(C^{(4)}(R)\right)$. Hence $\varsigma^{f}(R)$ can be computed in $O\left(n^{6}\right)$ steps using standard algorithms for computing the GSG-function [1].

Theorem 1. There exists an $n \times n$ matrix Γ over $G F(2)$ which can be computed polynomially, such that for every $\bar{u} \in V(C(R))$ we have $\Gamma \cdot \bar{u}^{\prime}=$ $\left(\epsilon_{1}, \ldots, \epsilon_{n}\right)^{\prime}$, where

$$
\bar{u}=\sum_{i=1}^{m} \epsilon_{i} \bar{u}_{i} \oplus \sum_{j=1}^{t} \epsilon_{m+j} \bar{v}_{j} \oplus \sum_{k=1}^{n-m-t} \epsilon_{m+t+k} \bar{z}_{k}
$$

and $\left(\bar{z}_{1}, \ldots, \bar{z}_{k}\right)$ is a basis of a complementary space of $C^{f}(R)$. Moreover, letting $Q(\bar{u})=\left(\epsilon_{n}, \epsilon_{n-1}, \ldots, \epsilon_{m+1}\right), Q$ is a homomorphism from $V(C(R))$ onto $G F(2)^{n-m}$ with kernel $C_{0}(R)$, such that $G(\bar{u})=\bar{Q}(\bar{u})=\Sigma_{i=1}^{\prime n} \epsilon_{m+i} i^{i-1}$ if $\left(\epsilon_{n}, \epsilon_{n-1}, \ldots, \epsilon_{m+t+1}\right)=(0,0, \ldots, 0) ; G(\bar{u})=\infty$ otherwise.

Conclusion 1. The N, P, T classification [1], [2], [3] and the GSGfunction of any $\bar{u}=\left(\alpha_{1}, \ldots, \alpha_{n}\right)$ can be computed polynomially. In particular, the values $\bar{Q}\left(\bar{u}_{i}\right)$, where $\bar{u}_{i}=\left(\epsilon_{1}, \ldots, \epsilon_{n}\right), \epsilon_{i}=1, \epsilon_{j}=0(j \neq i ; i=1, \ldots, n)$, determine $G(\bar{u})$. Indeed,

$$
Q(\bar{u})=\sum_{\alpha_{i}=1}^{\prime} Q\left(\bar{u}_{i}\right)=\left(\delta_{n}, \delta_{n-1}, \ldots, \delta_{m+1}\right)
$$

and so $G(\bar{u})=Q(\bar{u})$ if $\delta_{n}=\cdots=\delta_{m+t+1}=0 ; G(\bar{u})=\infty$ otherwise. This, however, does not yet guarantee the realization of a winning strategy, because of possible cycling.

Let $\bar{u} \in P=C_{0}(R)$. Then \bar{u} has a representation $\tilde{u}=\left(\bar{y}_{1}, \ldots, \bar{y}_{k}\right) \subset$ $\mathfrak{S}_{0}(R)(k \leqslant n)$ in the sense that $\bar{u}=\Sigma_{i=1}^{\prime k} \bar{y}_{i}$. For example, initially we may have $\tilde{u} \subset \beta_{0}$. Let c be a monotonic counter function on $C^{(4)}(R)$ (i.e., $G(\bar{u})<$ $G(\bar{v}) \Rightarrow c(\bar{u})<c(\bar{v}))$. We can choose $c(\bar{u})=O\left(n^{4}\right)$ for all $\bar{u} \in V\left(C^{(4)}(R)\right)$. Let $\widetilde{c}(\widetilde{u})=\Sigma_{i=1}^{k} c\left(\bar{y}_{i}\right)$. Then $\tilde{c}=O\left(n^{5}\right)$.

Theorem 2. There is a function Λ_{0} which can be computed polynomially, such that for every $\bar{u} \in C_{0}(R)$ and every $\bar{v} \in F(\bar{u})$,

$$
\begin{gathered}
\Lambda_{0}(\widetilde{u}, \bar{v})=\widetilde{w}=\left(\bar{w}_{1}, \ldots, \bar{w}_{k}\right) \subset \Theta_{0}(R), \\
\bar{w}=\sum_{i=1}^{k}{ }^{\prime} \bar{w}_{i} \in F(\bar{v}) \cap P \\
\tilde{c}(\widetilde{w})<\widetilde{c}(\widetilde{u})
\end{gathered}
$$

Note. The representation \widetilde{w} is obtained from \widetilde{u} in a bounded number of transformations. Details are omitted.

Conclusion 2. Using Λ_{0} and starting from any N-position, every annihilation game can be won in $O\left(n^{5}\right)$ moves using polynomial computation time throughout. The function Λ_{0} implies a winning strategy in the wide sense [3]. A bounded number of cycles may be traversed in realizing the strategy (but no cycling takes place in the "representation space"). We do not know if a winning strategy in the narrow sense exists which is always polynomial.

Further results, ramifications and proofs will appear elsewhere.

REFERENCES

1. A. S. Fraenkel and Y. Perl, Constructions in combinatorial games with cycles, Colloq. Math. Soc. János Bolyai, no. 10, Proc. Internat. Colloq. on Infinite and Finite Sets (Keszthely, Hungary, 1973; A. Hajnal, R. Rado and V. D. Sós, editors), Vol. 2, North-Holland, Amsterdam, 1975, pp. 667-699.
2. A. S. Fraenkel and U. Tassa, Strategy for a class of games with dynamic ties, Comput. Math. Appl. 1 (1975), 237-254.
3. C. A. B. Smith, Graphs and composite games, J. Combinatorial Theory 1 (1966), 51-81. MR 33 \#2572.

DEPARTMENT OF APPLIED MATHEMATICS, THE WEIZMANN INSTITUTE OF SCIENCE, REHOVOT, ISRAEL

