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In this report we shall sketch a proof of the fact certain free boundaries in 
Rn are smooth. This result can be applied to the variational solutions of obstacle 
problems, filtration problems and the one phase Stefan problem for melting ice, 
which have recently been obtained by various authors [1], [3], [4]. 

We first consider the following localization of the weak solution of an 
elliptic free boundary problem: We are given an open set W, a linear elliptic 
operator Au = 'Laij(x)didj (a^ G C 3 ina neighborhood of W ), and a function 
v G C1,1(W) and satisfying: (1) v > 0, Av = ƒ, where ƒ has a C t t ( a > 0) exten­
sion ƒ * to a neighborhood of W, with ƒ * > \ > 0; (2) dW=dx(W)U d2(W) 

where bt W is open in dW and v = | Vu I = 0 on dt W. (dt W is a part of the free 
boundary.) F will denote an open subset of bx W with F C btW. 

THEOREM 1. If X0 G F is a nonzero density point for the complement 
CW of W, there is a ball Bp(X0) of radius p, centered at X0, such that F n 
Bp(X0) is the graph of a C1 function and v G C2((W U F) n Bp(X0)). 

REMARK. This result has two virtues: first it shows that the variational 
solution is a classical one; second, it then follows from unpublished results of D. 

Kinderlehrer and L. Nirenberg that the gradient of the free boundary (as the 
graph of a function) is as differentiable as ƒ and at-. 

The proof goes as follows: First, Lemma 1, we prove that the pure 
second derivatives, u.., of v do not remain negative near F. More precisely, for 
XGW, vu(X) > - C|log d(X, F)\~\ where d(X, F) is the distance from X to 
F and e > 0. The geometric consequence of this fact is that, if Y G W, v(Y) > 

p 2 , and d(Y, F)<p1f2, then there exists a half ball, 

HB(Y, Cp |log p | e ' ) = B{Y, Cp |log p |€ ') n {X: (X - Y, r?> > 0} 

which is contained in W. If we recall that for X EW9 supB /Xxn wv > C p2, 
this lemma provides for each X G W a half ball contained in W, whose radius is 
much larger than the distance between its center and X. 

The following step, Lemma 2, controls how rapidly CW must become 
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"thin" at a point X0 of F of zero density with respect to CW: Let D(X0, e0, p, r?) 
denote the spherical cap {X: \X- X0 \ = p, a(X - X0 , 77) < e0} (T? a unit 
vector, a(U, V) the angle between U and K, e0 < C depending on the ellipticity 
of A). There exists a p0(e0), such that if D(X0, e0, p, 17) C CW for some p < 
p0(e0), then also Z)(X0, e0, p/2, T?) C CW for some 17'. 

The consequences of Lemma 2 are: 

(a) if X0 G F is a positive density point for CW then any Y0 G F near X0 

is of positive density for CW, and, hence, 

(b) in a neighborhood of X0, vfi(Y) > - Cd(Y, Ff for some e > 0; hence 
(c) if Xx GW and Xx = X0 4- X77, where X0 E F, there is a curve X = 

Q(p) (2X < p < p0) in W along which | Q(p) - X | = p and <*(Ô(p) - X0 , 7?) = 
pe , for some e' > 0. This allows us to show that if X0 is a point of density for 
CW, then in a neighborhood of X0, F is the graph of a Lipschitz function. An 
argument presented by the author [2] then gives the C1 character of F and the 
C2 character of v. 

In the parabolic case, we begin with the variational inequality presentation 
of the Stefan problem of Duvaut [3] and Friedman and Kinderlehrer [4]. 

For simplicity we will assume a smooth initial domain £2, which contains 
an initial open, smooth (C2) subset IQ with ƒ 0 C 12. (I0 is the initial location 
of the ice.) 12\/0 is connected and the temperature 9 is prescribed on 312 x 
(0, T) and (12\/0) x {0}. We assume the boundary data for 9 to be smooth (as 
in [4]), nonnegative, and not identically zero. 

The variational solution [4] is given by a nonnegative function v E 
Cy ^(£2 x [e, T]), CjMCÎÎ x [0, T]). The temperature 0 is given by the 
bounded function vT, and the ice is represented by the set / = {(X, t): v(X, t) — 

0}. Since vt is known to be nonnegative (a.e.), I can be represented by {(X, t): 

t < s(X)}, and although it is not explicit in [4], it follows easily from the 
approximating problems constructed there that (a) Avt - vtt = 0 on [12 x 
(0, T)]\I, and (b) Avt - vtt > 0 on 12 x (0, 7). Under these circumstances we 
can prove 

THEOREM 2. (a) If (X0, t0) E 3/ is a (spatial) density point for I, then 

there is a neighborhood {(X, t): \X - X0\ < e0, \t - f0| < ô 0 }, in which F = 3/ 
is the graph of a function g\ that is, in suitable coordinates F = {Xn = 
g(Xx,..., Xn _ j , t)} where gisC1 in ail its variables and all the second derivatives 
vij> vn> vtt are continuous up to F. In particular, vt is (in this neighborhood) a 

classical solution of the Stefan problem. 

(b) s(X) is a Lipschitz function in any compact subset of IQ, and hence, 

forn = 2,vt converges uniformly to zero on 3 / n {(X, t): e<t<T}. 

The proof of (a) is an adaptation of the techniques employed in the elliptic 

case. The regularity of vit, vtt and of g in time requires an extra argument. 

About (b), it is possible to prove that 
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vÂX, T)> C inf \X-Y\ + (t- s ) 1 / 2 . 

This implies that s(x) is Lipschitz and therefore any point in 3/ is, for n = 2, 
regular for the exterior Dirichlet problem. (See the appendix by A. N. Milgram to 
the book Partial differential equations, by L. Bers, F. John and M. Schechter.) 

REFERENCES 

1. H. Brézis and D. Kinderlehrer, The smoothness of solutions to nonlinear variational 
inequalities, Indiana Univ. Math. J 23 (1973/74), 831-844. MR 50 #13881. 

2. L. A. Caffarelli, The smoothness of the free surface in a filtration problem (to 
appear). 

3. G. Duvaut, Résolution d'un problème de Stefan (fusion d'un bloc de glace à zéro 
degré), C. R. Acad. Sci. Paris Sér. A - B 276 (1973), A1461-A1463. MR 48 #6688. 

4. A. Friedman and D. Kinderlehrer, A one phase Stefan problem, Indiana Univ. 
Math. J. 24 (1975), 1005-1035. 

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF MINNESOTA, MINNEAPOLIS 
MINNESOTA 55455 


