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1. Introduction. In the book, Theory of games and economic behavior 

(1944), J. von Neumann and O. Morgenstern introduced a theory of solutions 
(or stable sets) for multi-person cooperative games in characteristic function form. 
A longstanding conjecture has been that the union of all solutions of any particu
lar game is a connected set. (E.g., see [3].) This announcement describes a 
twelve-person game for which the conjecture fails. The essential definitions for 
an n-person game will be reviewed briefly before the counterexample is presented. 
A sketch of the proof is presented here, and the details will appear elsewhere. 

2. The model. An n-person game is a pair (TV, v) where TV = {1, 2, . . . , n} 

is the set of players and y is a characteristic function on 2N, i.e., u assigns the 
real number v(S) to each subset S of TV and v(0) = 0. The set of imputations is 

A = he: Y. x( = y(TV) and xt > v({i}) for all i G TV> 
\ i<=N ' 

where x = (xv x2, . . . , xn) is a vector with real components. For any S C TV, 
let x(S) = 2fe sXj. For any X C A and nonempty S C TV, define Dom^X to be 
the set of all x G A such that there exists a y G X with y. > xi for all / G S and 
with y(S) < v(S). Let Dom X = U ^ ^ ^ D o m ^ X . A subset V of A is a 
solution if V n Dom V = 0 and F U Dom V - A. The core of a game is 

C = {* G ^ : x(S) > u(S) for all nonempty S C TV}. 

For any solution F, C C F and F Pi Dom C = 0 . 

A characteristic function u is superadditive if u(5 U 7) > u(S) + u(!T) when
ever S O r = 0. The game below does not have a superadditive v as is assumed 
in the classical theory, but it is equivalent solutionwise to a game with a super
additive v. (See [ l , p . 68].) 

3. Example. The 13 vital coalitions for our example consist of TV = 
{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12} and elements from three classes: 

B = {{1, 2}, {3, 4} , {5, 6}, {7, 8}, {9, 10}, {11, 12}}, 
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S = { { 1 , 3 , 6 , 7 , 9 , 1 1 } , { 1 , 4 , 5 , 7 , 9 , 1 1 } , {2 ,3 ,5 ,7 ,9 ,11}} , 

T = {{1,3 ,8} , {1 ,5 ,10}, {3,5,12}}. 
And v is given by: v(N) = 6, v(S) = 1 for all S G B, v(S) = 4 for all S G S, 
u(S) = 1 for all S G T, and u(S) = 0 for all other S C N. For this game A = 
{x: x(iV) = 6 and xy > 0 for all i G TV}. Consider also the six-dimensional 
hypercube 

B = {x GX: x(S) = 1 for all S G B}. 

The core C is the intersection of C(S) and C(T) where 

C(S) = {x GB: x(S) > 4 for all S G S} , 
CXJ) = {xGB: x(S) > 1 for all S G T}. 

C is a proper superset of the convex hull of the six vertices of B which have xt = 
1 for i equal to five of the six odd indices 1, 3, 5, 7, 9 and 11, and xi+1 = 1 
when i is the remaining odd numbered player. Let DomgX = [JSG$DomsX. 

Note that DomgC D A - B, and hence any-solution V for our game is a subset 
of B. 

4. Outline of proof. First, note that any component of an x G B has a 

maximum value of xt = 1. Consequently, the following three sets are contained 

in any solution V9 i.e., they are subsets of C\V: 

E — {x G B: xt - x* = 1 for i =£ ƒ and ft /} C {1,3, 5}}, 
F= {xeC(T):xp = 1 for p = 7, 9 or 11}, 

P = { ( 0 , 1 , 0 , 1 , 0 , 1 , 0 , 1 , 0 , 1 , 0 , 1 ) } . 
Next, we can show that KJV must be a disconnected set. Let G — {x G 

B: x({7, 9, 11}) < 1}, G° = {xG£ :x ({7 , 9, 11}) < l},andi>' = {x G G: 
x2 = x4 = x 6 = 1}. Throughout this section the indices i, j and k represent 
some ordering of the distinct indices 1, 3 and 5. The subset H of E consisting 
of the three triangular regions 

Hi - {x GG: x / + ! = Xj = xk = 1 ; x7 + x9 + xx x = 1} 

is in C\V and DomsiV D G° - (E U P'). The subset J of F consisting of the 
three triangular regions 

J j \X ^ t/ . X < — X»-» ~"~ X g — 1 , X o i X c "T" À J 2 — 1 j 5 

«/ -a "̂ X ^ x^ • A -a —"" A rj —~ A i i — 1 , X i "T" A c • A I A — 1 J , 

«/ c \X t^ /^ • A c — X o — A i i — I , X i "T" A o "T" A Q "~" 1 j 

is also in O F and DomT ƒ D B - C(T) D P' - P. So any x G Ü F - P either 
has x G E or x G 2? - G°, i.e., x ; = x;. = 1 or x({7, 9, 11}) > 1. Such x are 
clearly disconnected from the singleton P C O F . 

Finally, it is necessary to demonstrate that this game does possess at least 
one solution. V* = C U E U F U P is in any solution V9 and V' can be enlarged 
to a solution in two steps. First, include the set of imputations L in C(T) -
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(V' U Dom Vf) which is simultaneously maximal with respect to all three of the 
relations "Dom5" for S G S. Clearly L C f)V. Next, pick a particular S* = 
{/ + 1, /, k, 7, 9, 11} G S and then add in those elements Ü in C(T) - (V U 
L U Dom(T' U L)) which are maximal with respect to the relation "Dom^/' 
and are at the same time symmetrical in the sense that x- = xk. It requires some 
detail to describe the sets L and V explicitly, and to verify that the resulting 
sets V*' = V' U L U V are solutions for our example. These will appear elsewhere 

5. Remarks. At one time it was apparently believed that proving the 

union of all solutions connected could be a major step in showing that every 

game has a solution. It is now known [2] that a solution need not exist for 

every game. On the other hand, it is possible that results on disconnecting Ü F 

might be useful in the resolution of important open questions about whether 

solutions always exist for games with full-dimensional cores, with empty cores, 

or which are constant-sum. 
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