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The (n + m) x (n + m) matrix 

R(a, b) = an a* 
b0 bx 

b0 bt 

b0 bx J 
is called the resultant matrix of the two polynomials a(X) = a0 + axX 4- * • • + 
anX

n and b(X) = b0 +bt\ + + bm\n (af,bf,eCl,an ¥= 0, bm * 0). The 
determinant of this matrix is called the resultant of the polynomials a(X) and 
b(X). The following classical theorem on resultants is well known: The number 
of common roots (counting multiplicities) of the polynomials a(X) and b(X) is 
equal to dim Ker R(a, b). 

This statement does not admit a straightforward generalization to matrix 
polynomials [1], if the same definition of the resultant matrix R(af b) is used 
as in the one-dimensional case. For example the matrix 

R (1 1 X - l j ' V O * - 2 j ) 
is not invertible although the polynomial matrices do not have common eigen
values, and the matrix 
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is invertible although the eigenvalues of the polynomials coincide. 
The main result of this article is concerned with a new definition of a 

def 
resultant matrix R®(a, ft) = R(a <S> 7, / ® ft), where ® is the sign of the right-
hand tensor product. 

Let \ , X2, • . . , \ be all the common eigenvalues of a(X) and ft(X). Let 
us denote by kx (a) > k2 (a) ^ ' ' '^ k: p(à) the powers of the elementary 
divisors of a(X) for the eigenvalue Xp. Let 

JpM fpW 
li(ay ft, Xp) = £ Z min{fc/p(fl), kfp(b)} 

and 

M(fl, ft) = (MO, ft, Xx) + MO, ft, X2) + • • • + v(a, ft, Xr)). 

The main result is the following generalization of the classical resultant 
theorem. 

THEOREM. Let a(X) and ft(X) be d x d matrix polynomials with invertible 

highest coefficients. Then dim Ker R®(a, ft) = /z(a, ft). Particularly a(X) and 

ft(X) have a common eigenvalue if and only if det R®(a, ft) = 0. 

We start sketching the proof by defining the common multiplicity of the 

eigenvalue XQ of polynomials a(X) and ft(X). Let 0O, <j>x, . . . , 0 r be a chain of 

the eigenvector 0O and the associated vectors (px, . . . , </>r, which correspond to 

Xn vo-

£ j$^-> ~ | Htf ») OJ*w 0 (fc = 0, 1, . . . , r ) 

The number r + 1 is called the length of the chain. We denote the maximal 

length of such chain with the fixed vector 0O by rank (X0, 0O). It is easy to 

find a basis 01 O , 02 O , . . . , 0;. 0 in the subspace M = Ker a(X0) O Ker ft(X0) 

such that rank(X0, 01O) = max rank(X0, 0) (0 GUI) and rank(X0, 0;- ) 

= max rank(X0, 0) (0 £ Af;; ƒ = 2, 3 , . . . , r) where M;- is the subspace with the 

basis 0 / + 1 0 , 0/+2,o> • • • > 0 r o- ** *s e a s^ t 0 s e e ^ a t ^or e v e ry vector 0 £ M, 
the integer rank(X0, 0) is equal to one of the numbers kj = rank(X0, 0;- ) (J = 
1 , 2 , . . . , ; 0 ) . Therefore these numbers depend only on the polynomials a(X), 
ft(X) and the eigenvalue X0. The integer p(a, ft, X0) = kt + k2 + • • • + kj is 
called the common multiplicity of the eigenvalue X0 of the polynomials a(X) and 
ft(X). If M = {0}, then we set v(a, ft, XQ) = 0. 

The proof of the theorem involves two main steps. The first is to prove 
the equality /!(#, ft, X0) = v{a ® ƒ, ƒ 0 ft, X0). The main theorem from [1] then 
implies that for large /, dim Ker Rx(a <8> ƒ, / ® ft) = M(#, ft), where 
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* 0„ 

Rfa b) 
a* a. 

b0 bx 

b0 bx -

n + / 

m + / 

b0 bt • • • bn 

The second step consists of proving that the dim Ker Rt(a ® /, I ® Z>) 
does not depend on / and therefore 

dim Ker Rt{a ® ƒ, ƒ ® fe) = dim Ker JR(a ® ƒ, ƒ ® 5). 

Let us mention that the main theorem is connected with the theory of the 
equation a(k) x(K) + y(\) b(\) = /(X), where /(X) is the given and x(X), ^(X) 
are the unknown matrix polynomials. 

All the detailed proofs will appear elsewhere together with some analogous 
results for the continuous case. 
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