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Introduction. If X is a nonsingular d-dimensional projective variety (over 
an algebraically closed field, k), then by a vector bundle on X we understand a 
torsion-free, coherent Ox-module. The classical notion of vector bundle (= 
locally free O^-module) is subsumed in the new definition and agrees with it 
when X is a curve. The new notion is necessary for the study of moduli prob­
lems [G], [L] and because the classical definition is too rigid for higher dimen­
sional varieties [L]. However, given a vector bundle on X, there exists an open 
subset U of X containing all points of codimension < 1 such that the vector 
bundle is locally free over U. Chern classes can always be defined for such bun­
dles. 

We fix, once and for all, a very ample divisor class, //, on X. Then for any 
prescheme S over k, the line bundle p* / / on X xk S (where p: X xk S —> X 

is the projection) is very ample with respect to S. As usual, set F(n) = F ® ƒƒ ® w, 
then the Hubert polynomial pF(n) is defined and, by the Riemann-Roch Theo­
rem, pF(n) has an expression in terms of Chern classes. Indeed, if we set 

deg F = (c t(F) • Z/**"1) (intersection no.), 

and refer to deg F as the degree of F (more properly, the //-degree of F), then 

M " ) = m ff_ (deg F _ degK\ nd~l 

r k F 0yA) d\ VrkF 2 / (rf - 1)! 

4- terms of lower degree in n. 

The quantities /x (F) = pF(n)/rk F, n(F) = (deg F)/rk F are fundamental for 
what we shall do. The former was introduced by Gieseker, the latter by Take-
moto [T], and both were inspired by results of Mumford for curves. We shall 
concentrate on /x; however, everything we do carries over to M suitably inter­
preted. Call n(F) the slope of F. 

The bundle F is semistable (resp. stable) if for every proper subbundle, G, 

fi(G) < fj.(F) (resp. JU(G) < ju(F)). Our bundle F is unstable if it is not semistable. 
We regard an unstable bundle as "more degenerate" than a semistable bundle, etc. 
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Main results. Let F be a bundle on X, as above. A Harder-Narasimhan 

Flag for F (abbreviated HNF(F)) is a descending chain of subbundles of F, 

(*) F>Ft~i >'">Ft >(0), 

having the properties: 

(a) each factor bundle FJ/F_1 is semistable; 
(b) M(F/+1/Fy) < fi(Ff/FH1l 1 < ƒ < t - 1. 

(These chains were introduced in [HN] in the case X was a curve, for other pur­

poses.) 

THEOREM 1. Every bundle, F, on the d-dimensional, nonsingular, irreduci­

ble, projective variety, X,possesses a unique HNF. Any two flags (*) satisfying 

(a) and (b) are identical. Moreover, if F is itself semistable, then F possesses a 

flag (*) in which 

(a) each factor bundle is stable, and 

(b) n(Fi+1IFj) = KFiiFi_1). 

Theorem 1 is not difficult to prove if one makes full use of the new defi­
nition of vector bundle—it is false otherwise. Given a bundle F, if we plot in 
the (rk, deg)-plane the points whose coordinates are the ranks and degrees of 
the bundles occurring in (*) for F, we obtain a polygon which we call the 
Harder-Narasimhan Polygon for F (HNP(F)). The slopes of the sides of this 
polygon are exactly the numbers MC^I)» ^{F2IFX), etc. ocurring in (b) above. 
Theorem 1 states that every F possesses a unique HNP, and that HNP(F) is a 

convex polygon. 

Let X be a nonsingular, irreducible, projective A:-variety and let S be a 
scheme over k. A vector bundle on X xk S, flat over S, will be called an alge­

braic family of vector bundles on X parametrized by S. If F is a family on X 

and s G S, we let Fs denote the pull-back of F to the fibre, Xs, of X xk S over 
s. The divisor class H on X induces divisor classes p*H and Hs on X xk S and 
Xs, respectively, by pull-back. These are very ample as H is, and semistability 
is measured via these given very ample sheaves. 

THEOREM 2? Given X, S, and F on X xk S, as above, form HNPiFs) 

for each s E S. If t0 E S is a specialization of s G S, then HNP(Ft ) lies on or 

above HNI^F^. That is, the Harder-Narasimhan polygon rises under specializa­

tion. 

When the moduli scheme for stable bundles exists (i.e., for X a curve [M] 
or a surface [G]), one can show that HNP(Fy) is a constructible function of s, 

therefore Theorem 2 implies it is upper semicontinuous. Using the upper semi-

2 
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continuity, we have obtained a fundamental map from vector bundles on 
X xk S to collections of r - 1 algebraic cycles (with nonnegative coefficients) 
of S, r being the rank of the bundles. 

In the simplest case, let Y be a ruled surface with base curve C, and let 
Yc denote the generic fibre. Fix a convex polygon, P, with vertices at (0, 0), 
(1, dx), . . . , (r, dr) (the d's are given integers), and let Vect(T; P) denote the 
set map of rank r bundles on Y whose HNP at the generic fibre Yc is the given 
polygon P. Then we obtain a 

Vect (7; P) -?-* I I Hilb(C). 
Y — 1 factors 

It turns out that two bundles on Y have the same image under 6 if and only if 
their pull-backs to each fibre of Y over C are isomorphic, moreover the map 0 is 
surjective. These matters are discussed in [ S ^ , [S 2 ] , [S 3 ] . 

REFERENCES 

[G] D. Gieseker, On the moduli of vector bundles on an algebraic surface (preprint). 
[HN] G. Harder and R. Narasimhan, The étale cohomology of the moduli of vector 

bundles over a curve, Invent. Math., 1975. 
[L] S. Langton, Valuative criteria for vector bundles, Ann. of Math. (2) 101 (1975), 

8 8 - 1 1 1 . 
[M] D. Mumford, Projective invariants and projective structures and applications, 

Proc. Internat. Congr. Mathematicians (Stockholm, 1962), Inst. Mittag-Leffler, Djursholm, 
1963, pp. 526-530 . MR 31 #175. 

[Sj] S. Shatz, On the decomposition and specialization of algebraic families of vec­
tor bundles (preprint). 

[S 2 ] , Vector bundles on ruled surfaces (preprint). 

[S3] , Vector bundles and Hubert schemes (preprint). 

[T] F. Takemoto, Stable vector bundles on algebraic surfaces, Nagoya Math. J. 47 

(1972), 2 9 - 4 8 . MR 49 #2735. 

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF PENNSYLVANIA, PHILA­
DELPHIA, PENNSYLVANIA 19174 


