RESEARCH ANNOUNCEMENTS

THE PRINCIPAL SYMBOL OF A DISTRIBUTION

BY ALAN WEINSTEIN¹

Communicated by Shing S. Chern, January 2, 1976

In Hörmander's theory of Fourier integral operators [1], a principal symbol is constructed for a certain class of distributions in such a way that, when the construction is applied to the Schwartz kernel of a pseudodifferential operator, one obtains the usual principal symbol of the operator. In this note, we describe a generalization of Hörmander's construction which may be applied to an arbitrary distribution on a manifold. Details will appear in [4].

1. Local definition and invariance properties. For a complex vector space V, we define V-valued distributions on \mathbb{R}^n by taking as test functions objects of the form u = u(x) dx, where u(x) is a compactly supported C^{∞} function with values in V^* , and dx is the density $|dx_1 \wedge \cdots \wedge dx_n|$. For $\tau > 0$, we define u_{τ} to be $u(\tau x) dx$. If g is a V-valued distribution, and φ is a C^{∞} function with $\varphi(0) = 0$, we define the family $\{g_{\tau}^{\varphi}\}_{\tau > 0}$ of distributions by

(1)
$$\langle g_{\tau}^{\varphi}, u \rangle = \langle g, e^{-i\tau\varphi} u_{\sqrt{\tau}} \rangle.$$

For $N \in \mathbb{R}$, we write $g_{\tau}^{\varphi} \in O(\tau^N)$ if $\tau^{-N}g_{\tau}^{\varphi}$ remains bounded in distribution space [3] as $\tau \to \infty$.

LEMMA. For every g and φ , $g_{\tau}^{\varphi} \in O(\tau^N)$ for some $N \in \mathbb{R}$.

DEFINITION. inf $\{N|g_{\tau}^{\varphi} \in O(\tau^N)\} \in [-\infty, \infty)$ is called the order of g at φ and denoted by $O_{\varphi}(g)$.²

Theorem 1. (a) If $O_{\varphi}(g) \leq N$ and $\psi(x) = \varphi(x) + \sum a_{jk}x_jx_k + O(x^3)$, then $g_{\tau}^{\psi} - e^{-i\sum a_{jk}x_jx_k}g_{\tau}^{\varphi} \in O(\tau^{N-1/2})$.

- (b) If $O_{\varphi}(g) \leq N$ and A is a C^{∞} function with values in $\operatorname{Hom}(V, V)$, then $(Ag)_{\tau}^{\varphi} A(0)g_{\tau}^{\varphi} \in O(\tau^{N-1/2})$.
- (c) If $O_{\varphi}(g) \leq N$ and $\theta \colon \mathbb{R}^n \to \mathbb{R}^n$ is a diffeomorphism with $\theta(0) = 0$, then $(\theta * g)_{\tau}^{\theta * \varphi} (T_0 \theta) * (g_{\tau}^{\varphi}) \in O(\tau^{N-1/2})$.

DEFINITION. If $O_{\varphi}(g) \leq N$, the class of $\tau^{-N} g_{\tau}^{\varphi}$ modulo $O(\tau^{-1/2})$ is called the *principal symbol* of order N for g at φ .

² See final note added in proof.

AMS (MOS) subject classifications (1970). Primary 46F10; Secondary 58G15.

¹ Partially supported by the National Science Foundation.

2. Global theory. The space $\mathcal{D}'(X; E)$ of distributions on a manifold X with values in a vector bundle E is defined as the dual of the space of compactly supported C^{∞} sections of $E^* \otimes \Omega_X$. ($\Omega_X = \text{densities on } X$.) Using local coordinates on X and local trivializations of E, and applying Theorem 1, we can define for each $(x, \xi) \in T^*X$ the order $O_{(x,\xi)}(g)$ of g at (x, ξ) .

To define the principal symbol in an invariant way, we must take into account the effect of changes in φ and coordinate changes as given by Theorem 1. For each $(x, \xi) \in T^*X$, the 2-jets of functions $\varphi \in C^{\infty}(X; \mathbf{R})$ with $\varphi(x) = 0$ and $d\varphi(x) = \xi$ can be identified with the elements of the space $L_{(x,\xi)}$ of lagrangian subspaces in $T_{(x,\xi)}T^*X$ transversal to the fibre. The additive group Q_x of homogeneous quadratic functions on T_xX acts simply and transitively on $L_{(x,\xi)}$, and it also acts on $\mathcal{D}'(T_xX; E_x)$ by $(a,g) \mapsto e^{-ia}g$. The space $U_{(x,\xi)}(X; E)$ is defined to consist of the Q_x -equivariant maps from $L_{(x,\xi)}$ to $\mathcal{D}'(T_xX; E_x)$, and $S^N_{(x,\xi)}(X; E)$ is defined as the space of families $\{g_\tau\}_{\tau>0}$ in $U_{(x,\xi)}(X; E)$ with $g_\tau \in O(\tau^N)$.

Now, if $O_{(x,\xi)}(g) \leq N$, Theorem 1 implies that the principal symbol $\sigma^N_{(x,\xi)}(g)$ of order N for g at (x,ξ) is well defined as an element of $S^0_{(x,\xi)}(X;E)/S^{-1/2}_{(x,\xi)}(X;E)$. If $\sigma^N_{(x,\xi)}(g)$ is of the form $g_0+S^{-1/2}_{(x,\xi)}(X;E)$, where g_0 is a constant in $U_{(x,\xi)}(X;E)$, we say that g is homogeneous of order N at (x,ξ) and, by abuse of notation, write $\sigma^N_{(x,\xi)}(g)=g_0$. If $O_{(x,\xi)}(g)=N$, we simply call $\sigma^N_{(x,\xi)}(g)$ the principal symbol of g at (x,ξ) and denote it by $\sigma_{(x,\xi)}(g)$. (If $O_{(x,\xi)}(g)=-\infty$, we define $\sigma_{(x,\xi)}(g)$ to be zero.)

As a first step toward a general calculus of principal symbols, we have:

THEOREM 2. Let P be a pseudodifferential operator of order k and type (1,0) from E to F with homogeneous principal symbol $(x,\xi) \to p(x,\xi) \in \text{Hom}(E_x,F_x)$. If $O_{(x,\xi)}(g) \leq N$, $\xi \neq 0$, then $O_{(x,\xi)}(Pg) \leq N+k$, and $\sigma_{(x,\xi)}^{N+k}(Pg) = p(x,\xi)\sigma_{(x,\xi)}^{N}(g)$.

COROLLARY.
$$(x, \xi) \notin WF(g) \Rightarrow O_{(x,\xi)}(g) = -\infty$$
.

3. The principal symbol of a Fourier integral distribution.

DEFINITION. If S is a subspace of T_xX , an E_x -valued δ -function on S is a distribution $\delta \in \mathcal{D}'(T_xX; E_x)$ such that:

- (a) δ is continuous for the C^0 topology;
- (b) δ is supported on S;
- (c) δ is translation-invariant by S.

For example, the δ -densities on S correspond to the translation invariant measures on S and form a 1-dimensional space.

Now let $K \subseteq T_{(x,\xi)}T^*X$ be a lagrangian subspace, with projection \overline{K} in T_xX .

³ This construction, as well as that of $\mathfrak{I}_{(x,\xi)}(X;E)$ itself, is closely related to the symplectic spinors of Kostant and Sternberg [2].

For each E_x -valued δ -function δ on \overline{K} there is a unique $\delta_K \in \mathcal{U}_{(x,\xi)}(X;E)$ which assigns δ to every $L \in \mathcal{L}_{(x,\xi)}$ such that $\dim(L \cap K) = \dim K$. The set of all δ_K , as δ runs over the E_x -valued δ -functions on \overline{K} , is a dim E_x dimensional subspace $\Delta_K(E)$ of $\mathcal{U}_{(x,\xi)}(X;E)$.

THEOREM 3. Let $g \in \mathcal{D}'(X; E)$ be a Fourier integral distribution associated with the conic lagrangian submanifold $\Lambda \subset T^*X$ and having order m, type (1, 0) and homogeneous principal symbol. Let $(x, \xi) \in \Lambda$, $K = T_{(x, \xi)}\Lambda$.

- (a) g is homogeneous of order $\overline{m} = m + \frac{1}{4} \dim X$ at (x, ξ) .
- (b) $\sigma_{(x,\xi)}^{\overline{m}}(g) \in \Delta_K(E)$.
- (c) If E is the bundle of ½ densities on X, then $\Delta_K(E)$ is naturally isomorphic with the fibre over (x, ξ) of the symbol bundle $\Omega_{1/2} \otimes L$ of [1], and $\sigma_{(x,\xi)}^{\overline{m}}(g)$ is equal to the principal symbol as given in [1].

REMARK. We can show directly that $\Delta_K(E)$ depends smoothly on lagrangian $K \subset T_{(x,E)}(T^*X)$, thus giving a new, analytic, construction of the symbol bundle.

ADDED IN PROOF (JUNE 2, 1976). As A. Douady has pointed out to me, the set $\{N | g_{\tau}^{\varphi} \in O(\tau^N)\}$ could be an interval of the form (a, ∞) . In this case, we should define $O(\tau^N)$ to be a^+ , where a^+ lies by convention between a and any number greated than a.

REFERENCES

- 1. L. Hörmander, Fourier integral operators. I. Acta Mathematica 127 (1971), 79-183.
 - 2. B. Kostant, Symplectic spinors, Symposia Mathematica 14 (1974).
- 3. L. Schwartz, *Théorie des distributions*. Nouvelle rev. ed., Hermann, Paris, 1966. MR 35 #730.
- 4. A. Weinstein, The order and symbol of a distribution, Inst. Hautes Etudes Sci. Publ. Math., 1976, (preprint).

INSTITUT DES HAUTES ÉTUDES SCIENTIFIQUES, BURES-SUR-YVETTE, FRANCE

Current address: Department of Mathematics, University of California, Berkeley, California 94720