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Academic Press, New York, 1975, 459 + xii pp., $34.50. 

The study of numerical integration dates from antiquity right up to the 
present. It is an important topic in numerical analysis and scientific computing 
to which many mathematicians, scientists, and engineers have contributed. 

Why numerical integration? Well, many integrals that arise in the real world 
simply cannot be evaluated analytically. And, of those integrals which can be 
analytically evaluated, the analytic "answer" may not be useful for computing. 
(An example: p. 2 of Davis and Rabinowitz.) 

For functions of one variable, numerical integration is called "quadrature", 
from the Greek quadratos, meaning the square whose area equals the area 
under a given (positive) curve. For functions of more than one variable, 
numerical integration is called "cubature". Much more is known about 
quadratures, whereas cubatures are considerably more important to users, a 
standard state of affairs in mathematical subjects. 

Numerical integration derives some of its appeal from the different levels of 
abstraction from which it can be approached. For example, functional analysis 
has been used to obtain error bounds. From classical real analysis, the 
beautiful theory of orthogonal polynomials leads to the powerful Gauss 
quadratures. On another hand, computing "rules of thumb" lead to the recent 
adaptive quadratures. 

This reviewer feels that most functions of one variable can be adequately 
numerically integrated, interpolated, etc., but that many functions of more 
than one variable cannot, especially if numerical data instead of functions are 
involved. In the latter case, only data in very special geometric configurations 
can be handled, e.g., tensor or cross product data. Randomly placed data are 
treated by a Monte Carlo method, if at all. 

On the positive side, what ideas from quadratures have been adapted to 
cubatures? 

1. "Product" regions, such as cubes, cones, and cylinders: Cubatures for 
them can be built up from quadratures. 

2. "Gauss cubatures": For the problem 

fa
bf(x)dx^ ^Akf{xk), 

if the In unknowns consisting of the Ak and xk are so chosen that the formula 
is exact whenever J{x) is a polynomial of degree less than or equal to 2n — 1, 
the integration scheme is called a Gauss quadrature. That is, a Gauss 
quadrature integrates exactly as many of the first monomials as there are 
parameters to be determined. The nodes (the xk) of Gauss quadratures are the 
zeros of the corresponding orthogonal polynomials. Now, for functions of two 
variables and the problem 

f f f(x,y)dxdy ^ 2 Akf(xk,yk\ 
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the nodes should be the common zeros of several orthogonal polynomials. The 
premier result is the special case: Radon's fifth degree formula with seven 
nodes (21 monomials and 21 parameters). 

3. Remainder theory: The remainder is the (truncation) error. There are two 
main types: real or complex variable. 

Quadrature remainders of the real variable type are usually of the form 

R(f)=fbf<m\t)K(t)dt. 
Ja 

These are derived from Peano's Theorem (see p. 218 of Davis and Rabinow-
itz). K(i) is called the Peano kernel and the parameter m is less than or equal 
to the dimension of the quadrature's precision set, e.g., m < 2n for Gauss 
quadratures. An issue only recently understood: People used to think that m 
must equal the above dimension. This led to such claims as that Gauss 
quadratures should only be used for functions that were sufficiently smooth, 
namely m = In and ƒ G C2n[a, b]. A. H. Stroud and others have laid this 
bogie to rest. What is true is that m = In sometimes leads to an especially 
simple form ("simplex" form) of the remainder, such as 

R(f) = af(2"\i)/(2n)\, a < | < b, 

for Gauss quadratures. Similarly for equally spaced quadratures, which are 
called Newton-Cotes rules. 

Cubature remainder theory is covered by the elegant Sard kernel theory, a 
generalization of Peano's kernel theorem. The beautifully written source is 
Arthur Sard's Linear approximation, Math. Surveys, no. 9, American Mathe­
matical Society, 1963. For an example of Sard's theory applied to cubatures, 
see the paper by Barnhill and Pilcher, Sard kernels for bivariate cubatures, 
Comm. ACM 16 (1973), 567-570. 

The complex variable remainder theory involves a Hilbert space of analytic 
functions to which the integrand belongs. Then the majorized remainder is 
bounded in the "derivative-free" form \R(f )| < a||/|| where a depends on R 
but not on ƒ. 

We emphasize that both the real and complex variable error bounds can be 
computed. Bounds are always conservative, because they cover many functions 
of which ƒ is only one, but at least they are tabulated for many integration 
rules. 

The numerical integration remainder theory applies equally well to other 
bounded linear functional such as interpolation. 

The authoritative book on cubature is A. H. Stroud's Approximate calcula­
tion of multiple integrals, Prentice-Hall, Englewood Cliffs, N.J., 1971. 

Davis and Rabinowitz is a monograph (not a textbook, e.g., no exercises), 
written to be "accessible to those with a background only in calculus". Its 
uniqueness lies in its footnotes and historical asides, although it covers 
quadrature well. The book has a large and useful bibliography, the size of 
which illustrates the activity in this field. The book also has a pleasant style, 
which enhances its readability. 

ROBERT E. BARNHILL 


