MARKOV PROCESSES ON MANIFOLDS OF MAPS

BY PETER BAXENDALE

Communicated by Daniel W. Stroock, January 2, 1976

1. Introduction. In this note we describe a construction of a Markov process on a manifold of maps starting from a Gaussian measure on the space of sections of an associated vector bundle. Let S be a compact metric space of finite metric dimension and M a smooth complete finite dimensional Riemannian manifold. Our basic construction gives a family $\{v_t: t \ge 0\}$ of Borel probability measures on the space $C(S \times M, M)$ of continuous functions from $S \times M$ to M with the compact-open topology. The multiplication (f, g)(s, m) = f(s, g(s, m)) for $f, g \in C(S \times M, M)$ makes $C(S \times M, M)$ into a topological semigroup with identity. Then $v_t * v_s = v_{t+s}$ for $s, t \ge 0$ and the right translates of the v_t give transition probabilities for a Markov process on C(S, M) induces a Markov process on C(S, M) with transition probability $v_{t,g} = \text{image of } v_t$ under the action of $C(S \times M, M)$ on $g \in C(S, M)$.

2. Statement of results. Let ξ denote the product bundle $S \times TM \longrightarrow S \times M$ and $C(\xi)$ the space of continuous sections of ξ . Given a Gaussian measure μ of mean zero on $C(\xi)$, define

$$Q(s, x, t, y) = \int f(s, x) \otimes f(t, y) d\mu(f) \in T_x M \otimes T_y M$$

for all $s, t \in S, x, y \in M$.

Q is a reproducing kernel for the bundle ξ (see Baxendale [1]) and determines μ uniquely. Let $X \in C(\xi)$.

For a closed isometric embedding of M inside some Euclidean space V, let h(x) denote the second fundamental form for $M \subset V$ at $x \in M$. Using the natural inclusion $T_x M \subset V$ and orthogonal projection $V \longrightarrow T_x M$, we think of X, Q and h taking values in V and its various tensor products.

THEOREM 1. Suppose there exists a closed isometric embedding $M \subseteq V$ such that (i) h is bounded and uniformly Lipschitz with respect to the metric on M induced from V.

Suppose moreover that there exist a Gaussian measure μ on $C(\xi)$, $X \in C(\xi)$ and $\alpha > 0$, C > 0 such that

AMS (MOS) subject classifications (1970). 58B20, 58D15, 60H10, 60J35.

Copyright © 1976, American Mathematical Society

(ii)

$$\begin{aligned} \operatorname{tr}(Q(s, x, s, x)) &\leq C, \quad \forall s, x, \\ \operatorname{tr}(Q(s, x, s, x) + Q(t, y, t, y) - Q(s, x, t, y) - Q(t, y, s, x)) \\ &\leq C(d(s, t)^{2\alpha} + |x - y|_V^2), \quad \forall s, x, t, y, \end{aligned}$$

(iii)

$$|X(s, x)|_{V} \leq C, \quad \forall s, x, \\ |X(s, x) - X(t, y)|_{V} \leq C(d(s, t)^{\alpha} + |x - y|_{V}), \quad \forall s, x, t, y.$$

Then μ and X determine a family of Borel probability measures $\{v_t: t \ge 0\}$ on $C(S \times M, M)$ satisfying

(a) $v_s * v_t = v_{s+t}$, $\forall s, t \ge 0$,

(b) the v_t are transition probabilities for a Markov process on $C(S \times M, M)$ with continuous sample paths.

We illustrate the dependence of the $\{\nu_t\}$ on μ and X as follows. For $\mathbf{s} = (s_1, \ldots, s_r) \in S^r$ and $\mathbf{x} = (x_1, \ldots, x_r) \in M^r$ denote by

$$\rho_{\mathbf{s},\mathbf{x}} \colon C(S \times M, M) \longrightarrow M^r$$

$$\sigma_{\mathbf{s},\mathbf{x}} \colon C(\xi) \longrightarrow T_{x_1}M \times \cdots \times T_{x_r}M$$

the evaluation maps at $(s_1, x_1), \ldots, (s_r, x_r)$. Let $v_{s,x}^t$ be the image of v_t under $\rho_{s,x}$, then

(i) the $v_{s,x}^t$ for all s, x determine v_t ,

(ii) the $v_{s,x}^t$ for fixed s are the transition probabilities for a Markov process on M^r with continuous sample paths.

THEOREM 2. The Markov process corresponding $\{v_{s,x}^t: t \ge 0, x \in M^r\}$ has infinitesimal generator A_s , where

$$(A_{\mathbf{s}}g)(\mathbf{x}) = \frac{1}{2} \int (\nabla^2 g)(\mathbf{x}) \ (\sigma_{\mathbf{s},\mathbf{x}}(h), \ \sigma_{\mathbf{s},\mathbf{x}}(h)) d\mu(h) + (\nabla g)(\mathbf{x})(\sigma_{\mathbf{s},\mathbf{x}}(X)),$$

where ∇ is covariant differentiation with respect to the product Riemannian structure on M^r .

3. The construction. For each s, x and t > 0, we construct a measure $\nu_{s,x}^t$ on M^r as follows. Using the embedding $M \subset V$ and choosing suitable extensions, we construct a Wiener process W_t in $C(S \times V, V)$ (see Gross [2]) and $\widetilde{X} \in C(S \times V, V)$. Define

$$Y(s, x) = \frac{1}{2} \int_{C(\xi)} h(x)(g(s, x), g(s, x)) d\mu(g) \in T_x^{\perp} M \text{ for } x \in M,$$

and extend to $\widetilde{Y} \in C(S \times V, V)$. Consider the stochastic differential equation in V^r

$$d\eta_i(t) = (\widetilde{X} + \widetilde{Y})(s_i, \eta_i(t)) dt + dW(t)(s_i, \eta_i(t))$$

$$\eta_i(0) = x_i$$

The choice of \widetilde{Y} ensures that if $x_i \in M$, then $\eta_i(t) \in M$ for all t > 0 with probability one. The conditions (i), (ii) and (iii), plus care in choosing extensions, imply that the equation has a solution for all t > 0, that the solution is continuous with probability one and has finite moments of all orders. We define $\nu_{s,x}^t$ to be the distribution of $(\eta_1(t), \ldots, \eta_r(t)) \in M^r$. The existence of the $\{\nu_t\}$ follows from the Daniell-Kolmogorov construction and an estimate on the moments of solutions of the stochastic differential equation.

4. Examples. Suppose S and M are compact Riemannian manifolds and $p > \frac{1}{2} \dim S$, $q > \frac{1}{2} \dim M + 1$. Then $L_p^2(S) \otimes L_q^2(TM) \subset C(\xi)$ is radonifying, and the Wiener measure μ satisfies the conditions of Theorem 1. Take X = 0. Each pair (p, q) in the range above yields a different family $\{v_t\}$ of measures on $C(S \times M, M)$.

The condition that M be compact may be replaced by completeness together with certain curvature conditions.

Notice that the case $M = \mathbb{R}^n$ yields Gaussian measures. Also S = point and suitable choice of μ gives Brownian motion on M under the sole condition that there exists a closed isometric embedding with $||h(x)|| \leq C(1 + d(x, x_0))$ for some C > 0 and $x_0 \in M$.

REFERENCES

1. P. Baxendale, Gaussian measures on function spaces, Amer. J. Math. (to appear).

2. L. Gross, Potential theory on Hilbert space, J. Functional Analysis 1 (1967), 123-181. MR 37 #3331.

DEPARTMENT OF MATHEMATICS, KING'S COLLEGE, ABERDEEN, SCOTLAND