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1. Introduction. In this note we describe a construction of a Markov 
process on a manifold of maps starting from a Gaussian measure on the space 
of sections of an associated vector bundle. Let S be a compact metric space of 
finite metric dimension and M a smooth complete finite dimensional Riemannian 
manifold. Our basic construction gives a family {vf: t > 0} of Borel probability 
measures on the space C( S x M, M) of continuous functions from S x M to 

M with the compact-open topology. The multiplication (ƒ, g)(s, m) = 
ƒ(s, g(s, m)) for f g G C(S x M, M) makes C(S x M, M) into a topological semi
group with identity. Then vt * vs = vt+s for s, t > 0 and the right translates 
of the vt give transition probabilities for a Markov process on C(S x M, M) with 
continuous sample paths. The left action of C(S x M, M) on C(S, M) induces 
a Markov process on C(S, M) with transition probability vt = image of vt under 
the action of C{S x M, M) on g <E C(S, M). 

2. Statement of results. Let | denote the product bundle S x TM —> 

S x M and C(£) the space of continuous sections of £. Given a Gaussian 
measure JJL of mean zero on C(£), define 

Öfc x9 u y) = f As, x) 0 ƒ(*, J O W ) e TXM ® 7yif 

for all s, t G S, x, y G M. 

Q is a reproducing kernel for the bundle £ (see Baxendale [1]) and determines 

fi uniquely. Let X G C(£). 
For a closed isometric embedding of M inside some Euclidean space V, 

let h(pc) denote the second fundamental form for M C V at x G Vkf. Using the 
natural inclusion 7ykf C V and orthogonal projection F ~> T̂ Af, we think of 
X, Q and /z taking values in V and its various tensor products. 

THEOREM 1. Suppose there exists a closed isometric embedding M C V 

such that (i) h is bounded and uniformly Lipschitz with respect to the metric 

on M induced from V. 

Suppose moreover that there exist a Gaussian measure JJL on C(£), X G 
C(£) and a > 0, C> 0 such that 
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tr(Q(s, x, s, x)) < Q Vs, x, 
00 

tr(ö(s, x, s, x) + Q(t, y, t, y) - Q(s, x, t, y) - Q{t, y, s, x)) 

< C(d(s, t)2a + \x -y\\), y s, x, t, y, 

,..., \X(s, x)\v<C, VS.JC, 

(ill) V 

\X(s, x) - X(t, y)\v < C(d(sf t)a + \x-y\v), Vs,x,t,y. 
Then fi and X determine a family of Borel probability measures {vt: t> 0} 

on C(S x M, M) satisfying 
(a) vs *vt = vs+v Vs, t>0, 
(b) the vt are transition probabilities for a Markov process on C(S x M, M) 

with continuous sample paths. 

We illustrate the dependence of the {vt} on JJL and X as follows. For s = 
(Sj, . . . , s r) e Sr and x = (xx, . . . , xr) G Af denote by 

p s x : C(S xMfM)^Mr 

< W C ( 0 — TXiMx---xTxM, 

the evaluation maps at (sv xx), . . . , (sr, xr). Let vf
s x be the image of vt 

under p s x , then 
(i) the vf

s x for all s, x determine vv 

(ii) the v\ x for fixed s are the transition probabilities for a Markov process 
on Mr with continuous sample paths. 

T H E O R E M 2. The Markov process corresponding {v\x: t > 0, x G Mr} 

has infinitesimal generator A s, where 

(AsgXx) = i J (V 2 s ) (x ) (a s>x(/i), oU9K(h))dKh) + (V*)(x)(a f f X(*)), 

w/zere V w covariant differentiation with respect to the product Riemannian 

structure on Mr. 

3. The construction. For each s, x and t > 0, we construct a measure 
v*8 x on Mr as follows. Using the embedding M C V and choosing suitable 
extensions, we construct a Wiener process Wt in C^S x V, V) (see Gross [2]) 
and X G C(S x V, V). Define 

Y(s, x) = ~ Jc(ç)*(*)fefr x), *(s, *))*•(?) G r^M for x G M , 

and extend to 7 S C(S x F, K). Consider the stochastic differential equation 
in V 
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dVi(t) = (X + Y)(si9 vt(t))dt + dW(t)(si9 Vi(t))) 
\i = 1, . . . , r. 

The choice of Y ensures that if xt G M, then r).(f) E M for all t > 0 with 
probability one. The conditions (i), (ii) and (iii), plus care in choosing 
extensions, imply that the equation has a solution for all t > 0, that the solution 
is continuous with probability one and has finite moments of all orders. We 
define v\ to be the distribution of (^(Y), • • . , r?r(0) ^ Mr. The existence of 
the {vt} follows from the Daniell-Kolmogorov construction and an estimate on 
the moments of solutions of the stochastic differential equation. 

4. Examples. Suppose S and M are compact Riemannian manifolds and 
p > fcdim 5, q > îidim M + 1. Then L2

p(S) ® L2
q(TM) C C(£) is radonifying, 

and the Wiener measure JU satisfies the conditions of Theorem 1. Take X = 0. 
Each pair (p, q) in the range above yields a different family {vt} of measures on 
C(S x Mf M). 

The condition that M be compact may be replaced by completeness to
gether with certain curvature conditions. 

Notice that the case M = Rn yields Gaussian measures. Also S = point 
and suitable choice of JU gives Brownian motion on M under the sole condition 
that there exists a closed isometric embedding with \\h(x) \\ < C(l + d(x, x0)) 

for some O 0 and x0 G M. 
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