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Quantum physics has greatly influenced the theory of self-ad joint 
operators throughout its development and continues to do so today. One 
problem arising in quantum physics, which is the main problem dealt with in 
the book under review, is the addition problem: When is the sum of two 
unbounded self-adjoint operators self-adjoint? More precisely, let A, B with 
domains D(A), D(B) be self-adjoint operators on a complex Hubert space 
H. If the closure C of A+B (defined on D(A)nD(B)) is self-adjoint, then 
we can regard C as " the" self-adjoint sum of A and B. More interesting are 
the cases in which C has many self-adjoint extensions, and the problem is to 
find the "right" one (if indeed there is a right one). 

In quantum mechanics, kinetic and potential energy are described by 
self-adjoint operators, A, B say. Their sum is the total energy operator C, 
and to do quantum mechanics one must compute functions of it. One can do 
this (by the spectral theorem and the associated functional calculus) when C 
is self-adjoint. In particular, when C is self-adjoint, the dynamics of the 
system is described by the one parameter unitary group {exp(- itC) : t e R}, 
which is well defined. An example is the case of a spinless nonrelativistic 
quantum mechanical particle in a given potential. The Hubert space is 
H=L2(Rn) and the kinetic and potential energy operators are 
A = -A=-X"_id2/dx/, £ = t h e operator of multiplication by V(;c):Rn-»R 
(B=V(x) for short). This set-up also describes two-body problems with no 
external potentials. The problem is to find the most general conditions on V 
so that A + B (suitably interpreted) is self-adjoint. 

One approach to the addition problem is via the Lie-Trotter product 
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formula. For A, B self-adjoint and t real, let 

Un(t) = {exp(-itA/n)exp(-itB/n)}n. 

If the closure C of A+B (on D(A)HD(B)) is self-adjoint then 

exp(-tfC) = strong lim Un(t). 
n-»oo 

On the other hand, if Un(t) has a strong limit which is a unitary group 
{exp(-iïC) : r eR} , then we may define C to be the (Lie) sum of A and B. C 
is a certain self-adjoint extension of A+B on D(A)C\D(B); for some 
purposes it can be regarded as the "right" one. This approach is developed 
nicely by P. R. Chernoff [1], but it is not discussed in Faris' book. 

The approach favored by Faris is the one based on sesquilinear forms. If 
A is a self-adjoint operator, it determines a sesquilinear form SA by the 
formula 

(*) SA(f,g) = (Af,g), 

(•, •) denoting the underlying inner product. SA has a natural extension to 
Q ( A ) = Q ( A ) x Q ( A ) where Q(A) = D(|A|1/2). Thus, supposing for instance 
that A is positive (A^O), we have 

SA(f,g) = (Af,g) = (Ai,2f,Awg); 

this last expression is well denned for ƒ, g e Q(A). Conversely, with certain 
sesquilinear forms S one can associate a self-adjoint operator so that S=SA 
holds (see (*)). 

Now let A, JB be two self-adjoint operators on H. Consider the associated 
sesquilinear form S = SA + SB defined on Q(A)r\Q(B). If S = Sc for a self-
adjoint C, we define C to be the form sum of A and B. This definition is 
very natural in terms of quantum mechanics. A self-adjoint operator A 
represents an observable of a quantum mechanical system. For a unit vector 
feH, (Af, f) represents the expectation value of the observable A in the 
state ƒ. This quadratic form (by polarization) determines SA on Q(A). In 
case A [resp. B] represents kinetic [resp. potential] energy, the total energy 
C should be determined by adding expectation values: 

(Cf,f) = (Af,f) + {Bf,f), 

and this can be done for ƒ G Q(A)flO(JB) (which is often significantly larger 
than D(A)C\D(B)). This definition has proved to be particularly useful 
when A and B are positive (or more generally when A is positive and the 
negative part of B is small relative to A in a suitable sense). 

Faris has collected a substantial amount of recent research in his short 
volume, "recent" meaning since the appearance of T. Kato's book [3] in 
1966. Faris' book is divided into four parts. 

Part I begins with a review of the theory of self-adjoint operators through 
a statement of the spectral theorem, which is not proved. A bijective 
correspondence is established between positive self-adjoint operators and 
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closed positive sesquilinear (or quadratic) forms. Various conditions are 
given ensuring that the form sum of A and B is self-adjoint. The applica­
tions include C. Friedman's results on Schrödinger operators ( - A + V ( J C ) ) 

with potentials having small support. 
In part II the Hilbert space is taken to be L2 of a measure space. The 

notion of positivity preserving ( / ^ 0 a.e. implies L / ^ 0 a.e.) is introduced. 
This leads to the notion of hypercontractive semigroups. Estimates of the 
form A2-f jB2^const(A+B)2+const are established; these estimates are use­
ful in quantum field theory. The Perron-Frobenius theorem is used to 
establish that in certain cases the infimum of the spectrum of the positive 
operator A+B is an eigenvalue of multiplicity one. Among the applications 
is the following beautiful theorem of T. Kato: If 0 ^ Ve Li2

oc(R
n), then the 

closure of - A + V on the C°(Rn) functions with compact support is self-
adjoint (on L2(Rn)). 

Parts III and IV are short. Part III gives a slick treatment of the 
construction of semibounded self-adjoint extensions of a semibounded sym­
metric operator. These are parametrized by closed positive forms. Part IV 
deals with the relation between self-adjointness and the determination of a 
measure by its moments. It includes E. Nelson's theorem on analytic vectors 
and self-adjointness. 

A notable feature of the book is that it is filled with interesting examples 
and counterexamples, the main recurring one being H=L2(R"), A — — A, 
B=V(x). There are also short introductions to some of the ideas of 
quantum mechanics and quantum field theory. 

There are a few typographical errors. The author occasionally uses the 
terms "form" and "operator" interchangeably. The reviewer was unable to 
verify the application of the Sobolev inequalities on pp. 28, 32 using the 
form of the inequalities given in E. Stein's book, to which the author refers. 
Better references would be A. Friedman's book [2] and L. Nirenberg's 
paper [4]. In his neat presentation of the Heinz inequality (p. 30) the author 
fails to mention E. Heinz's name. But these criticisms are minor. 

The author says: "In order to follow [this book] it should be sufficient to 
know real analysis and have some acquaintance with Hilbert space." This 
seems overly optimistic. The reader should have at least a moderately 
competent working knowledge of the spectral theorem. The book is well 
written. In some places the author is perhaps a bit stingy with details, but 
this should not deter any serious reader. 

All in all, this reviewer found Faris' book to be a valuable and interesting 
survey of and introduction to some recent research in operator theory. 
People interested in the interplay between operator theory and quantum 
physics should also look at the forthcoming important book of M. Reed and 
B. Simon [5]. 
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Scattering theory for the d'Alembert equation in exterior domains, by Calvin 
H. Wilcox, Lecture Notes in Mathematics, No. 442, Springer-Verlag, 
Berlin, Heidelberg, New York, 1975, 184 pp., $8.60. 

The subject of this book is a mathematical model for the propagation of 
sound around obstacles. The basic problem is to describe the behavior of 
sound waves which impinge on an infinitely hard object occupying a com­
pact region r<=R3 (the analysis is carried out for r<=Rn). Roughly, one has 
an incoming wave u~ which is unaffected by the obstacle. The sound then 
reaches F where it is reflected, diffracted, and is generally subject to 
complicated physical processes. Eventually the intensity of sound near T dies 
out indicating that the sound wave has traveled away from T (the model is 
conservative so the only way for sound to disappear in one place is for it to 
appear somewhere else). Thus for large time one expects to find a wave u+ 
which is unaffected by the obstacle. 

The mathematical model is the following. The sound wave is described by 
a function w : R x ( R 3 \ r ) ^ R where du(t, x)/dt represents the difference 
between the pressure at place x and time t and the equilibrium pressure. 
With an appropriate choice of units the equation of motion for u is the wave 
(or d'Alembert) equation, 

(1) Uu-Au = 0 

where A=£r=i (d/dxi)2. The Neumann boundary condition 

(2) n • grad* u = 0 o n R x a r 

(n=normal to dT) describes the interaction of sound with an infinitely hard 
obstacle. Waves in the absence of obstacles satisfy d'Alembert's equation on 
the entire space RxR". 

The intuition described above suggests that if u is a solution of (1), (2), 
then on any bounded set /3c=Rn, u(t)\p->0 as r—»°° and that there is a 
solution, w+, of the wave equation on RxR n with w~w+ for t large. Similar 
assertions hold for r—> — oo with an associated free wave u~. From a practical 
perspective one often knows the initial free wave u- which then interacts 
with T then tends to u+ as *—»<». The map u~->u+ is called the scattering 
operator. 


