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We consider the effect of small random perturbations on a (deterministic) 
dynamical system x = b(x). The vector x(t) then becomes a stochastic process 
xe(t). The perturbations are taken to be Gaussian white noise, i.e., x€(t) satisfies 
the stochastic differential equation 

(1) dx = b(x) dt 4- eo(x) dw. 

Here w(t) is the «-dimensional Wiener process (Brownian motion), b(x) is a vec­
tor field, o(x) is the diffusion matrix and e ¥= 0 is a small real parameter. 

The cumulative effect of even very small random perturbations may be 
considerable after sufficiently long times, so that even if the deterministic dynam­
ical system has an asymptotically stable equilibrium point, the trajectories of the 
system will leave any compact domain with probability one. The following prob­
lem was posed by Kolmogorov: determine the probability distribution of the 
points on the boundary where trajectories exit, at the first time of their exit 
from a compact domain, as well as the expected exit times. The random effect 
may be thought of as a slow diffusion of particles in the deterministic flow field 
given by b(x), and the results may differ according as particles are diffusing (a) 
with a flow, (b) across a flow, or (c) against a flow. Results on (a) were first 
obtained by Levinson [4] , and on (b) by Khasminskiï [3] , both of whom used 
analytical techniques. Problem (c) seems to be the most difficult, and to date 
only partial results are available (cf. Ventsel and Freidlin [5] and Friedman [1] 
who used probabalistic methods). Using analytical techniques, we present a full 
solution of this problem for flows which are essentially gradients of a potential 
(as well as certain more general flows). 

Let f]l be a compact domain in Rn with a smooth boundary 3£2. Let 
a(j(x) = îé(o(x)a*(x))//-, be strictly positive definite in £2, b(x) = (bv b2,..., 
bn)9 and let u€(x) be the solution of the Dirichlet problem 

Leu = e2 £ at1 ~r~ + Z */ ¥~ = g(x) (x e £2), 
(2) e

 itpx
 lJ àx.dxf jft

 l dx, 
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It is well known [1] that if g = 0, then 

and that if g = - 1 with ƒ = 0, then 

Me(x) = EXT ~ X71. 

Here r is the first exit time of a trajectory xe(t) of (1) from the domain 12, 
Ex denotes the conditional expectation, given that xe(0) = x and Xx is the prin­
cipal eigenvalue of L€. Let 0 G 12 denote the origin of the coordinate system 
and v(x) = (yx, . . . , vn) the outer normal to 312. For any function \p(x) in 12, 

l* s t '**>&>$*: (*ean), 
*, ƒ= 1 i 

represents its conormal derivative. 

THEOREM 1. Let b(x) be a smooth vector field in 12 - 0, and assume 

n 

b ' v = £ bfa)vfo) < 0 (x G 912), 

and 
n 

\b\2 = E *?(*)> 0 (JCGJT-0). 
1=1 

/ƒ fftere exists a function \fr(x) in 12 such that 

ty*) =!>,•/(*) |̂ r <7= 1,2, «) 
/ = 1 I 

and if g = 0, f/ze/i we(x) —• <?, uniformly on any compact subset of 12 as e —• 0. 
77*e constant c is given by 

h a exp(i//e~2)p(x)/(x) ds 
c = lim 

6"*° fda
QM^e~2)p(x)ds 

with p(x) = 3i///3n = b - v. 

THEOREM 2. Let p€(y) = Pr (xe(t) = y\x€(0) = x) (y G 312, x G 12), 2>e 

the probability density of the exit points ofxe(t) from 12. Then, (i) if the max­

imum of \p on the boundary, is achieved on a set U C 912, with nonempty inte­

rior If, and that the measure of U - U° in 312 is zero, then 

I p(y)/fu0p(x)ds ifyeu°, 

0 if y G 3S2 - If-
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(ii) assume for simplicity that n = 2 and let (x, y) = (x(s), y(s)) be the 

parametric representation of 3£2, where s denotes arc lenth on 3£2. If the maxi­

mum of \jj on 312, is achieved at the points sx, s2, . . . , sm, and 

Hx(st), y(s()) - iP(x(s)9 y(s)) = d~2\s - s,)2*'(l + o(l)) 

as s - Sj —> 0, with d( > 0 (i = 1, 2, . . . , m), and k s /^ = k2 - • • • = fcp = 
max^. (p < m), ffteft 

p / p 
lim pe(x(s), X*)) = Z S(s - fytyPfy) / S <*/P(s/) 
e-*o. / = 1 / / = 1 

wftere 6(s) is the Dirac measure on 312, and p(s) = p(x(s),.y(s)). 

THEOREM 3. Ler Z>(x) 0«d \p(x) be as in Theorem 1, with \jj normalized so 

that i//(0) = 0, and assume that H(0) = det d2\p/dx2\x==0 ¥= 0. Ifg(0) =£ 0 (e.g., 

g = -1 ) , then 

u€(x) ~ c(e)[l - exp(f(x)/e2)], 

where 

f(x) = p(x)dist(x, 3 1 2 ) / X at1v^x)vfpc). 

In case (i) of Theorem 2, 

c ( e ) = (27r62r/yQ)exp(-^/e2) 

with i// = max a n i// < 0. 
In case (ii) of Theorem 2 

c ( e ) = 2nke(2k-1)!kg(0)exp(-4>le2) 

Note that the expected exit time increases exponentially and the principal 
eigenvalue decreases exponentially, as e —> 0. 

REMARKS. (I) Similar results hold for higher dimensions in (ii) as well as 
for more general equations in all Theorems, and also if g(0) = 0 and/or H(0) = 0. 

(II) The results of Ventsel and Freidlin correspond to m = 1 in (ii), for 
somewhat more general flows, while the results of Friedman for Theorem 1, cor­
respond to ƒ = constant on the set of maxima. 

(Ill) The methods we employ are generalizations of the method developed 
by Grasman and Matkowsky [2]. 
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