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Consider the second order linear system 

(1) x"+A(t)x = Q, 

where A(f) is an n-by-n continuous matrix. Disconjugacy and other Sturm-type 
properties of solutions of (1) have been studied by a number of people (see e.g. 
[1] —[4]). Virtually no study has been made of the sign properties of the indi­
vidual components of solutions of (1). It appears that such a study would be of 
interest not only from a theoretical point of view but also from a more practical 
point of view. We announce some results along this line, which are obtained un­
der certain conditions on the matrix A(t). For definitions and basic concepts 
one might consult [1] and [4]. 

THEOREM 1. Let A(t) = (atft)) be symmetric with a^if) > 0 whenever i =£ 
ƒ and t E [a, b], where b is the first conjugate point of a. Then there exists a 
nontrivial solution u(t) = co\(ut, . . . , un) of (I) with u(a) = u(b) = 0, and 
uk0) ^ 0 on [a, b]9k = 1 , . . . , n . 

The converse of Theorem 1 holds in the following sense. 

THEOREM 2. Assume that A(t) = (aif(t)) is positive definite on (a, b) ex­
cept at isolated points. Ifa^i) > 0 on (a, b), and if there exists a nontrivial sol­
ution y(t) = colOj, . . . , yn) of (1) with y(a) = y(b) = 0 and yt(t) > 0, i = 
1, . . . , « , on {a, b), then b is the first conjugate point of a. 

We recall that an n-by-n matrix A = (atj) is called irreducible if it is impos­
sible to have {1, 2, . . . , n} = I U / , / n ƒ = 0 , ƒ =É 0 # / , and aif = 0 for all 
i ei,jG / . 

THEOREM 3. Let A(t) = (aif(t)) such that aif(t))> 0 on [a, b] and A(t0) 
is irreducible for some t0 G (a, b). Ifyif) = col(y t, . . . , yn) is a nontrivial sol­
ution of{\) such that y(a) = y(b) = 0 and yt(t) > 0 on (a, ft), i = 1, . . . , n, 

then y't(a) > 0, y\Q)) < 0 and yt(t) > 0 o » f e J ) , / = l «. Moreover, if 
w(t) is any solution of (1) with w(a) = w(b) = 0, then w(t) = ayif) for some 
constant ou 
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THEOREM 4. Assume that A(t) = (aif(t)) is symmetric with ai}{t) > 0 on 

an interval [c, °°), and A(t0) is irreducible for some t0 > c. If (I) is disconjugate 

on [c, °°), then there is a solution y{t) = colO^, . . . , yn) of (I) satisfying y(c) 

= 0 and y ft) > 0 on (c, <*>), i = .1, . . . , n. 

Let P[a, b] denote the set of absolutely continuous Rn-valued functions 

h(t) on [a, b] such that \h'\ G L2 [a, b], and h(a) = h(b) = 0. Let J[h] define 

the functional 

J[h] = f *(</*', h') - (A(t)ht h))dt. 

J a 

over the set of admissible functions P[a, b\. The following lemma is a slight 

modification of a well-known result (see [4, p. 332]). 
LEMMA 1. If A(t) in (1) is symmetric and if [a, b] contains no point con­

jugate to a in its interior, then J[h] > 0 for all h E P[a, b]. 

To give an idea concerning the proof of Theorem 1, we note that by defini­
tion of conjugate point there is a nontrivial solution y(t) of (1) with y(a) = y(b) 

= 0. It follows that J\y] = 0. Let u(t) = col(ul, . . . , un), where uff) = 
\y((t)\, i - 1, . . . , n. Clearly, u G p[a, b]. One then shows that J[u] <J[y]. 
This, along with Lemma 1, implies that J[u] = 0. It then follows from standard 
argument in the Calculus of Variations that u{t) is the required solution (note 
that u affords a minimum to / for the class P[a, b]). 

Next, we give an indication of the proof of Theorem 3. The first part of 
this theorem follows essentially from the definition of irreducibility and the fol­
lowing lemma. 

LEMMA 2. Let A(t) = (a^(t)) with aif(t) > 0, and lety(t) = c o l O ^ , . . . , y n ) 

be a solution of (1) satisfying y (a) = y(b) = 0, and yt(t) > 0 on (a, b)9 i = 
1, . . . , n. If for some k, k = 1, . . . 9n, either (i) y'k(a) = 0, (ii) y'k(b) = 0, 
or (iii) yk(c) = 0 for some c, a < c <b\ then yk(t) = 0o« [a, b]. 

To prove the second assertion of Theorem 3, one shows that the set {a > 
01^/(0 - awt{t) > 0 on (a, b), i = 1, . . . , n} is nonempty and bounded. Let z* 
= y(f) ~~ a*w(f), where a* is the least upper bound of the preceding set. If one 
assumes that w is independent of yt then it follows from the first part of the theo 
rem that zf(t) > 0 on (a, b)9 i = 1, . . . , n. One then shows the existence of a 
sufficiently small j3 > 0 such that zf(t) - f$wt(t) = yff) - (a* 4- P)wt{t) > 0 on 
(a, b)9 i — 1, . . . , n9 thus contradicting the definition of a*. 

Proofs of Theorems 2 and 4 are based on a consideration of conjugate points 
relative to certain perturbations of (1), and applications of the above lemmas and 
Theorems 1 and 3. 

It can be shown that with the aid of certain transformations some of our 
theorems can be generalized considerably in the sense of weakening the requirements 
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on the signs of the elements a^it) of A(t). For example, Theorem 1 may be 
stated as follows: 

THEOREM 1'. Assume that A{t) = (a^(t)) in (1) is symmetric, and let b be 
the first conjugate point to a. Suppose that {1,2, . . . 9n} = P U TV with P O 
N = & and 

(i) atJ(t) > 0 on [a, b] ifi -=h j and either i, j EP or i, j E N, 

(ii) atj(t) < 0 on [a, b] if i =£ ƒ and either i EP, f EN or i EN, f E P. 
Then there exists a nontrivial solution y{t) = co\(yx, . . . , yn) of (I) such 

that y(a) = y(b) = 0, yk(t) >0on [a, b] for kEP,and yk(t) <0on [a, b] for 
kEN 
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