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ABSTRACT. Following the method of A. Weil [ 4 ] , we define the Weil 

representation of general linear groups in 1, of symplectic groups (odd charac­

teristic) in 2, of unitary groups in 3, over finite fields. We give its character 

and decomposition and some functorial properties. The symplectic case was 

also studied by R. Howe [1] and M. Saito [ 3 ] , the unitary case by R. I. Leh-

rer [ 2 ] . 

1. The Weil representations of symplectic groups (odd characteristic). 
1.1. Let (E, f) be a symplectic vector space over the field k with q ele­

ments. Let H(E, ƒ) be the group E x k with the law 

(1) (w, z)(w', z') = (w + w', z 4- z + i(w, w')), 

where i = j/2. It is a two-step nilpotent group with center Z isomorphic to k by 

z *-> (0, z). The group Sp(#, ƒ) of ƒ acts on H(E, ƒ) by s: (w, z) •—» (sw, z). 

1.2. For each nontrivial character f of Z, there is a unique class V^f'^ of 

irreducible representations of H(E, ƒ) given by f on Z. 

THEOREM 1. There is a unique extension W^'^ ofrfE'^ to Sp^ , ƒ), ex-

cept for q = 3, dim E = 2, where there is a unique extension W^E,}^ disjoint 

from its conjugate. 

The representation W^E,J^ is called the Weil representation of Sp^ , /) asso­
ciated to the character f. 

1.3. The Weil representations wiE,J^ have the following properties: 

(1) Wf>n = Wf>j) iff f'((0, z)) = £((0, z*2)) for a f G A;* and all zEk. 

(2) W^ J ) splits in two simple components of degree (qn + l)/2 and 
(qn - l)/2, where ft = dim #, given on the center of Sp(^, ƒ) respectively by 
(l/q)n md-(llqT. 

(3) The complex conjugate of W^Ef^ is W^ (E,j) 
-l 

(4) The support of the character of W^E,}^ ® rff'^ is the set of conju­
gates of Sp(£, ;)Z. 

(5) The class Wf>f) <g> W*jfL'P is the natural representation of Sp(#, ƒ) in 
C[E]. 
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(6) For s e Sp(E, ƒ), Tr Wf>J'\s) has qN^ for absolute value, 2N(s) = 

dim Ker(s - 1). 

(7) Let Ex be an isotropic subspace of E and E0 = E\/Ex. There is a 
natural surjective map from the stabilizer L of Ex in Sp(^, j)H(E, j) onto 
Sp(E0, j0)H(E0, / 0 ) , where ; 0 is the symplectic form induced by ƒ on Zi^. Let 
P be the stabilizer of Et in Sp(#, / ) . The representation n of PH(E, ƒ) induced 
by the representation H/^o^V ® rç^W of L is the product of the restriction 
of Wf'ft ® r ? ^ to P//(#, ƒ) by the character x* 1 ^) = (de t^ s ) ( 1 ~^ ) / 2 . 
Moreover W^'7'* is the only extension of 17^^ to Sp(E, ƒ) which is given by 
XE"1 ® TT on P. 

(8) If # = 2 #,. (orthogonal sum), and jr is the restriction of ƒ to Er, the 
restriction of Wf>j) to the product n Sp(^r, / r) is < 8 > ^ r ' / r ) . 

(9) If E = Res^'/fc # ' and ƒ' is a symplectic form on E' such that ƒ = 
TV / f c / ' , the restriction of wf>» to Sp(#', ƒ') is Wf'^ where f'((0, z')) = 
f((0, T r f c > z')). 

(10) If t E Sp(Z?, ƒ) is semisimple, t belongs to a subgroup isomorphic to 
a product of kr(±)9 where fcr(-) is the multiplicative group of the extension of 
degree r of k, and kr{+) is the kernel of the norm from k%r to k*. The trace 

of Wf'f) on f is x(t)(-l)a(t)qN(t\ with x(0 = n t(
r
1±qr)/2 where fr is the com­

ponent of t in kr(±), a{t) is the number of r such that tri^\. The other ele­
ments of Sp(^, /) are in proper subgroups of type P as in (7), and the character 
of w(E'iï on them is obtained from the formula of induced characters. 

2. The Weil representations of unitary groups. 
2.1. Let K/k be a quadratic extension of the field k with q elements, F a 

vector space over K and i a nondegenerate skew-hermitian form on F. The set 
of all couples (w, z), w E F, z G K with z - z = i(w, w), is a group by the law 
(1); it is a two-step nilpotent group H(F, i) with center Z isomorphic to fc by z 
»--» (0, z). The group U(Ft i) of the form / acts on H(F, i) by u: (w, z) >—> 
(ww, z). 

2.2. For each nontrivial character f of the center Z of H(F, i) there is a 
unique class rfjF*l>* of irreducible representations of H(F, i) given by f on Z. 

THEOREM 2. 77œre w 0 unique extension W^F^ of 7?<F'° to U(F, i) such 

that: 

(a) for q oddy W^F^ = x ( F ' ° ® W ^ ° " ^ F ' ^ where X(i7,0(w) = 
(det u)(1+q^2, E is the underlying k-vector space of F, ƒ = TxKfk i, and W^E,J^ 
is the Weil representation of Sp(E, ƒ) associated to f ; 

(b) for q even, W^F'1^ is real, and moreover for q = 2, dim F = 2, ]\fi 'l' 

contains no one dimensional representation of l/F>1) which factors through the 

determinant The representation W^F,t^ is called the Weil representation of 

W 0. 
2.3. The Weil representation W^F,t^ has the following properties: 
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(1) W^F'1^ does not depend on ?. 
(2) Let n = dim^ F\ W^F'^splits in q simple classes of degree 

W1 " (""" ^)n]l{q + 1) corresponding to the nontrivial characters of the center of 
rt™ and, for n > 1, a simple class of degree q[qn~l - ( -1)""" 1 ] /^ + 1). 

(3) For u E u<F»i>, Tr « ^ ( H ) = (- l f e ^ ) A r ( " ) , where 7V(w) = 
dim^ Ker(w - 1). 

(4)—(10) As in part 1, (4)-(10) with the obvious modifications and all the 
characters x are now trivial; in (9) F* = Res^' ,K F and [K' : K] is odd, i = 
TxK'/K i. 

3. The Weil representations of general linear groups. If the class Wv of 
the natural representation of GL(K), for a finite dimensional vector space over 
the field k of order q, in the space of complex functions on V is called the Weil 
representation of GL(F), its properties are similar to those of the Weil represent­
ation of the unitary group of same rank over k (for example, (2) and (4) up to 
the sign ( - I f ) . 
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