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Consider, for each genus n > 0, an oriented handlebody U of genus n, em­
bedded in the 3-sphere S in such a way that the closure U' of 2 - U is homeo-
morphic to U. Let H be the group of all orientation-preserving homeomorphisms 
of Bd U —> Bd U, and let F (respectively L) be the subgroup of those maps in 
H which extend to homeomorphisms of U (respectively U ). Let H be the in­
duced group of automorphisms of/^(Bd U)9 and let K be the kernel of the natu­
ral map r? : H —> H. Each element /* G H may be used to define a 3-manifold 
M(h), which is represented as the disjoint union of U and - U, identified by the 
rule x = h(x) for each x G Bd U, i.e. a Heegard splitting S(h) of genus n. More­
over, each 3-manifold admits such a representation for some n and some / /GH. 

The ju-invariant ii(M(h)) is defined in [5]. For known results see [2], [6], 
[7]. The purpose of this note is to announce results of a study of n(M(h))9 

which relate the value of [x(MQi)) to the membership of h in various subgroups of 
H which are closely related to the groups F, L, K defined above. Our main re­
sults are: 

I. We give a constructive procedure for enumerating all Z-homology spheres 
with ju-invariant Vi. The enumeration proceeds by enumerating all pairs (W, g), 

where W is an n x n symmetric unimodular matrix which has even diagonal en­
tries and signature 8 (mod 16) and g is an arbitrary element of L n K. Each 
such pair determines a map h = h(W, g) G H which determines a Heegaard split­
ting SQt) of a 3-manifold M(h) with ii(MQij) = Vi. The Heegard genus n of M(h) 

will always be at least 8. 

II. We give a constructive procedure for obtaining, for each even Heegaard 

genus n > 2, infinitely many Z-homology spheres with JU-invariant Vz, each being 

given as S(h) for some h G H. 

III. THEOREM. For each n>2 and each he H such that Hx(MQi\ Z/2Z) 

= 0, there is a normal subgroup P(h) of index 2 in K such that ii(M(kh)) = 

ti(M(h)) if and only if k G ?(h). 

Here is a brief description of our methods. We consider equivalence classes 

of map pairs, where a map pair (h2, h3) is an element of H x /ƒ, and map pairs 
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(h2, h3), (h2, h'3) are equivalent if there exist elements fv f2, f3 in F such that 

With each such map pair (h2, h3) we associate & fundamental triple of oriented 
3-manifolds (M1$ M2, Af3), defined by the respective Heegaard splittings S(h3h2

l\ 
S(h2), S(h3). Equivalent map pairs have fundamental triples which are topologi­
cal^ equivalent, and also they admit Heegaard splittings that are simultaneously 
equivalent in the particular manner dictated by equations (1). We also associate 
with each equivalence class [Qi2, h3)] of map pairs a triadic 4-manifold N which 
has the property that its oriented boundary is equivalent to the disjoint union 
Mx + M2 -M3. The above constructions are all based upon ideas in [3] and 
[4]. In particular, the concept of (an equivalence class of) a map pair is abstracted 
from the concept of (an equivalence class of) a Heegaard presentation (see [3] ) 
or a Heegaard representation (see [4] ). It then follows from a theorem due to 
Rohlin [8] that 

(2) ix{Mx) + M(M2) - n(M3) = - r/16 (mod 1), 

where r is the signature of the bilinear form //2(7V)/torsion x Z/2(/V)/torsion 
—•> Z, provided that a fundamental triple (Mv M2, M3) is made up of Z/2Z-ho-
mology spheres and the bilinear form for N has even type. 

An abelianized map pair is the image (T?(/Z2), 1?(^3)) of a map pair (h2, h3) 

in H x H. Equivalence of abelianized map pairs is defined in the obvious way. 
Using methods initiated in [1], we study abelianized map pairs. In particular, 
we show that Hx(Mt\ Z), i = 1, 2, 3, is completely determined by the equiva­
lence class [(T?(/*2), v(h3))], and also that if HX(M3\ Z) = 0, then r can be read 
off from an appropriate canonical representative of [(r}(h2), i?(/i3))]. Even more, 
we show that we can, to a certain extent, construct map pairs which have desir­
able properties. For example, for map pairs where the associated 4-manifold has 
a bilinear form of even type: 

(i) We can arrange matters so that r = 8 (mod 16), also M2 « M3 « 2 , 
also H1(M1 ; Z) = 0. Since JU(2) = 0, equation (2) then forces fx(Mx) to be Vi. 

(ii) We arrange matters so that M2 and M3 are given Z-homology spheres 
with known ju-invariant, and also so that r is either congruent to 0 (mod 16) or 
to 8 (mod 16), as desired, and finally so that H1(M1 ; Z) = 0. Equation (2) then 
implies that if JJL(M2) - ix{M3) is incongruent to r/16 (mod 1), then id(Mt) = Vi. 

(iii) We arrange matters so that Mx is a given Z/2Z-homology sphere, and 
so that M2 and M3 are each S. Then ju(^i) = ~ r/16 (mod 1) can be read off 
from the abelianized map pair. 

Details and related matters will be discussed in another journal. 
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