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considerations. The topics covered by Skorohod are: measurable polyno
mials (this is an abstraction of the Itô-Wiener theory of homogeneous chaos 
in Wiener space); absolute continuity and quasi-invariance under shifts and 
nonlinear transformations; and surface integrals and Gauss' formula in 
Hubert spaces. (The last of these topics appears here for the first time.) In 
contrast, the book of Badrikian and Chevet includes: GB and GC-sets, 
e-entropy, a thorough discussion of the work of Sudakov with complete 
proofs (given for the first time) together with recent amplifications due to 
Chevet, and 0-1 phenomena and integrability properties of Gaussian meas
ures. Of the two books, Badrikian and Chevet's is much more up-to-date 
and Skorohod's is much more accessible to the novice. Together they 
constitute a quite complete account of the state in which this art finds itself 
today; the one with its emphasis on computation, the other with its infatua
tion with generality and elegance. Unfortunately, neither one devotes any 
space to Feynman integration or the recent applications that this area has 
enjoyed in quantum field theory. On the other hand, if the success of these 
probabilistic techniques in physics continues, there will certainly be books 
forthcoming on that subject, and these books will then be appreciated for 
the groundwork which they have laid. 
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Geometric theory of algebraic space curves, by S. S. Abhyankar and A. M. 
Sathaye, Lecture Notes in Mathematics, no. 423, Springer-Verlag, Berlin, 
Heidelberg, New York, 1974, xiv + 302 pp., $11.50. 
Let k be an algebraically closed field, for example k = C (the complex 

numbers) will do. An affine algebraic variety over k is the solution set of a 
family {/«(xi, • • -, xn)}« of polynomials in n variables (for some n) with 
coefficients in k. Actually, we should be more precise about where our 
solutions are located. If A is a k-algebra (e.g., A-k itself, or A = some 
field extension of k) then we can evaluate the polynomials /«(xi, • • •, xn) on 
n-tuples (ai,---,an) from A. Hence, it makes sense to consider those 
n-tuples from A for which all the polynomials ƒ« vanish. These n-tuples are 
the points of our variety V with values in A (or rational over A) . I n e whole 
variety, V, should be thought of as the collection of all the sets, V(A), 
consisting of the points of V with values in A for all k-algebras A. 

Classically, geometers considered only the case in which the k -algebra A 
was a field; since the book under review adopts a classical position, we shall 
also restrict attention to the case when A is a field. If ft denotes an 
algebraically closed field of infinite transcendence degree over k, then it 
turns out that all phenomena of the classical variety V may be captured in 
the set V(ft). We can therefore replace the somewhat nebulous idea of the 
collection V(K) (where K is a field over k) by the one set V(ft). Even more 
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marvelously, one finds that (Hilbert Nullstellensatz) V(k) is dense in V(ft), 
so that most properties of V may be viewed in the very concrete set of 
k-rational points of V, V(k). 

Now it is easy to see that there is a 1-1 correspondence between 
k -algebra homomorphisms 

k[xi, • • -,x„]/(/«(xi,- • -,x„))a -> A 

and points of V with values in A; namely, to the point a = (au • • •, an)weassoci-
ate the homomorphism 6a, where Oa(Xi) = ax\ and to a homomorphism 0, we 
associate the point a0 = (0(xi),- • •, 0(xn)). Since we are restricting ourselves 
to the case of points with values in a field (or, as they are called in 
Grothendieck's terminology, geometric points), it is clear that the ideal 
generated by the f«(xi, • • •, x„) may be replaced by its radical. When this is 
done, the k-algebra 

Si(V) = k[Xl, • • • , Xn]/V(/«(Xl, • • ' , Xn))« 

is called the affine algebra of V (or the coordinate ring of V). Notice that 
sd(V) is a finitely generated k-algebra without nonzero nilpotent elements. 
Such a k-algebra will be called an affine ring over k; the present book 
considers these objects in detail. The correspondence between ideals, 21, 
which equal their own radical and affine varieties allows for easy passage 
between "pure algebra" and geometry; at the same time it allows for some 
distressing tendencies which are very evident in the book under review. 
(More about this later.) 

A more valuable geometric theory results from considering projective 
varieties. Algebraically, this corresponds to passing from the above set-up to 
the case of graded rings and homogeneous ideals. Once this is done, there is 
no longer the elementary correspondence between geometric points of the 
variety and homomorphisms of a ring to a field (a fortunate happenstance 
which gives projective geometry its power and depth), but there still is a 1-1 
correspondence between projective varieties embedded in Pn (projective 
n-space) and relevant homogeneous ideals equaling their own radicals of the 
ring k[x0, xi,- • •, xn]. (Here, relevant means that the radical of the ideal 
does not contain the fixed ideal (x0, xi,- • -,xn).) In the present book, the 
authors make much use of this correspondence. 

A more general geometric set-up than the projective varieties can be 
obtained by patching together affine varieties along open subsets (copying 
the manner in which one passes from open subsets of Rn to a manifold). If 
one removes a hyperplane section from a projective variety, one obtains an 
open set which is an affine variety and these affine varieties are naturally 
glued along their mutual intersections. Hence, the projective theory fits into 
the "manifold" set-up. The first person to seriously consider this method 
was André Weil [W] who called the resulting geometric objects abstract 
varieties. However, he patched along open subsets by densely defined maps 
(called rational maps). The first person to achieve a modern synthesis 
incorporating patching by everywhere defined maps and including contem
porary techniques such as sheaf theory and cohomology was J. P. Serre [S]. 
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His methods and points of view were greatly generalized and deepened by 
A. Grothendieck [Gl] , [G2]; it is the Grothendieck school which is in 
current ascendence. 

Projective and affine varieties (perhaps not exactly as sketched above) 
were well known to the founders of and early workers in algebraic geometry 
(the German school of the last quarter of the last century: Brill, Noether, 
etc., and the Italian school straddling the turn of the century and extending 
up to the 1930's: Castelnuovo, Enriques, Severi, etc.). Besides being 
mathematicians of considerable insight and ingenuity, they did not flinch 
from the computation and examination of innumerable special examples to 
help illuminate the phenomena they uncovered. Among these phenomena 
was one with which the current book is principally concerned. 

Suppose we consider r hypersurfaces embedded in F n (r<n). The set-
theoretic intersection of these hypersurfaces will (in general) be a subvariety 
of codim r. One can ask for the converse: Given a subvariety of codim r in 
F n , is it set-theoretically the intersection of r hypersurfaces? The answer is 
no; however, if the answer is yes, we call the given variety a set-theoretic 
complete intersection. (An example in which the answer is no is furnished by 
the union of two projective planes in F 4 which meet at a single point.) 
Observe that if SÏ is a homogeneous ideal of k[x0, xi, • • •, xn] generated by r 
elements and if the variety, V, determined by 51 in F n has codim r, then 
certainly V is a set-theoretic complete intersection. When the conditions of 
the last sentence hold, we shall say that V is a (strict) complete intersection. 

When the founding fathers of algebraic geometry investigated examples, 
they stayed mainly in the cases: curves in the plane (F2), curves in space 
(F3), surfaces in F 3 , and higher dimensional phenomena for complete 
intersections. They discovered that in all their examples every connected 
space curve was a set-theoretic complete intersection. Naturally they posed 
the now classical question: Is every connected (less generally, irreducible) 
curve in F 3 a set-theoretic complete intersection? This question remains open 
even now. The genesis of the book under review is the fact that Abhyankar 
was able to make some progress towards an answer (see below). 

Max Noether asserted [N] that every "general" surface of degree ^ 4 in 
F 3 contains only curves which are complete intersections. His proof, while 
ingenious, left something to be desired (from the point of view of rigor). 
Lefschetz [L] reopened the investigation in the course of his great achieve
ment of applying algebraic topology to algebraic geometry. He proved that 
every nonsingular variety of dimension ^ 3 which is a strict complete 
intersection in F n contains only hypersurfaces which are themselves com
plete intersections. Moreover the same result holds for sufficiently general 
surfaces in F n (n^4) which are complete intersections and are not contained 
in any hyperplane. And, lastly, Noether's Theorem is valid. The point of all 
of this is that the notion of complete intersection is very geometric and 
natural, and that it has attracted quite serious attention. 

There is another aspect of the problem of complete intersections. This has 
to do with vector bundles. One can think of vector bundles dynamically (as 
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families of varying vector spaces, one over each point of a variety V) or 
statically (as spaces over V which are locally of the form ExU, where E is a 
fixed vector space and U is an open subset of V—the patching being done 
by elements of the general linear group on E). In any case, the problem of 
determining all vector bundles over a given variety is very hard. In the 
simplest case, Serre [S] conjectured that: Every vector bundle over affine 
n-space is trivial (i.e., a product E x A n ) . Algebraically this means that every 
finitely generated projective module over the ring k[xi, x2, • • •, xn] is free. 
Of course, this is true and classical for n = l ; it was proved by Seshadri for 
n = 2 [Sh]. Serre showed that if his conjecture could be proved for n = 3, then 
every nonsingular (irreducible) curve in P 3 with a trivial canonical line 
bundle (i.e., of genus g ^ l ) would be a strict complete intersection. Murthy 
and Towber [MT] proved Serre's conjecture for n = 3; in the proof they use 
a result of Abhyankar's giving an explicit and workable set of three 
generators for the ideal corresponding to a curve in P 3 . The latter result is 
covered in the current book. Abhyankar's generators are not in general 
certain special linear combinations of the given generators of the ideal and 
this question persists for the projected curve in P 2 . Krusemeyer [K] has 
recently given an obstruction in K2(k) whose vanishing is necessary in order 
that such special combinations be available for the projected plane curve 
(for suitable plane curves). 

Having sketched at some length the circle of ideas that are connected with 
the material which is discussed or ought to be discussed in the current book, 
we should now examine the book itself. According to the preface, the book 
exists to give a completely self-contained treatment of the following theorem 
of Abhyankar: Every irreducible, nonsingular, space curve of genus at most 
one and degree at most five is a complete intersection. As we mentioned 
above, Murthy's theorem is more general, but it was proved using some of 
Abhyankar's preliminary results. 

In giving a self-contained treatment of any subject, one is aiming at the 
uninitiated, for (presumably) the initiates will already have much back
ground information and the treatment can be shorter. But, if this is the case, 
no uninitiated reader will really understand this book and it must be judged 
a failure. Of course, any dedicated reader will eventually have a perfect local 
and logical understanding of the material, but because of the way the book 
is written, he will not have the faintest global picture nor will he know how 
the results were originally arrived at. The authors have simply ignored a 
coherent global exposition in favor of a notationally and terminologically 
detailed local exposition. 

The subject matter is geometry and the title of the book is GEOMETRIC 
theory of algebraic space curves. But the authors eschew all visible geometry 
and hide all the connections spelled out above between their work and the 
rest of geometry. They write in their preface, "What we present here is a 
geometric argument in which we never even need a coordinate system. 
However, it might be difficult to convince anybody that this is geometry, for 
we have deliberately avoided the use of geometric terms, so that the proof 
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may stay rigorous, self-contained, and still reasonably short. Thus we have 
taken the useful geometric concepts, translated them into precise algebraic 
terms and almost never gone back to the geometric terms." 

It seems that this distressing tendency to hide all geometric antecedents 
results from a misreading and misinterpretation of the guiding philosophy 
behind Zariski's work from 1937 to the present. Zariski, as he explains in 
the preface to Vol. I of his collected works [Z], had become disaffected with 
and uneasy over the logical structure of the Italian contributions to 
geometry. In his words: "I began to feel distinctly unhappy about the rigor 
of the original proofs I was trying to sketch (without losing in the least my 
admiration for the imaginative geometric spirit that permeated these proofs); 
I became convinced that the whole structure must be done over again by 
purely algebraic methods." He also writes in the same preface, "It (his 
work) became strongly algebraic in character, both as to methods used and 
as to the very formulation of the problem studied (these problems, neverthe
less, always have had, and never ceased to have in my mind, their origin and 
motivation in algebraic geometry)" (Zariski's italics). It was one of Zariski's 
achievements that he was able to use algebra as a method to prove the 
geometric theorems he wanted; he started a school of algebraic geometry in 
which the methods and problems were handled algebraically. However, it is 
apparent that he never intended to throw out geometry. The authors state 
that they give a dictionary in §43 to enable the reader to understand the 
geometry. Nonsense! The proper way to stay true to the Zariskian ideal 
would have been to emphasize the interplay of algebra and geometry, to 
show how the geometry translates into doable and rigorous algebra, and to 
have translated back when the results were obtained. This is especially true 
in an expository book. 

The book has further problems. For one thing, the notation is overbear
ing. For another, the theorems are stated in a maximum of notation and a 
minimum of English (see, for example, Theorem 10.1, pp. 33, 34, 35, 
36(!)). No one can read formulas such as occur on pp. 22, 23, 24, 25 (where 
whole pages are covered with formulas). Also pp. 123-129 are totally 
covered with formulas. The book is made bulky by constant repetition, e.g., 
§§18 and 19 of Chapter II (especially the top paragraphs of pp. 93 and 94). 
In many places the English is not smooth, e.g., a favorite construction of the 
authors is: • • • it follows that: upon letting 

It would be easy to dismiss the book for all these faults; however, this is 
not possible because it is written by serious mathematicians and contains 
important, nontrivial mathematics. Therefore, I will content myself with 
several suggestions which I feel might have vastly improved the book. 

(1) The important §10 gives the structure of double points. The conductor 
is studied thoroughly, but the statements are so cumbersome that a rework
ing is necessary. One should give examples of high nodes and cusps—this 
will be easy because of the theorems of the section. 

(2) While the notion of adjoint is introduced, it is not explained geometri
cally and its significance is buried in the morass of details and formulas of 
the book. This should be corrected, especially since the authors give 
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Abhyankar's treatment of differentials and hence spend no little space on 
these objects. 

(3) The key points of Abhyankar's and Murthy's proofs—the projection 
theorems and basis theorem—should be heavily emphasized via examples, 
geometric language, pictures to indicate what is going on, and some intuition 
as to where the material is headed and why. For example, it would be nice 
to have the "cone", "plane", and "quadric" lemmas in geometric language 
and to have pictures and examples for all of these results. In particular, why 
should the reader have to wait until p. 243 for the intuition behind the word 
"7r-quasihyperplane" when the concept itself is introduced on p. 151? 

It is a shame that the authors wrote the book in such an opaque and 
cumbersome style. It could have been an important contribution to the 
literature by showing how one can apply detailed concrete computations and 
ideas to algebraic geometry. 
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The functions of mathematical physics, by Harry Hochstadt. Pure and Applied 
Mathematics, Vol. 23, Wiley-lnterscience, New York, 1971, xi + 322 pp., 
$17.50. 

At first sight, the theory of the special functions of mathematical physics 
seems to be little more than a disorganised collection of formulas. There 
appear to be more than fifty special functions and there is more than one 
definition of each one of them; for each there is a bewildering variety of 


