CONFORMAL MAPS ON HILBERT SPACE

BY MELVYN HUFF

Communicated February 15, 1975

1. Introduction. In [1] Nevanlinna gave a simple proof of the following theorem of Liouville. (Precise definitions appear below.)

Theorem 1. Suppose U is a connected open set in a real Hilbert space H of dimension ≥ 3 (including ∞) and $f \colon U \longrightarrow H$ is C^4 and conformal. Then f is either

- (a) an affine map whose linear part is a constant multiple of a unitary operator,
 - (b) an inversion with respect to a sphere,
 - (c) $f_1 \circ f_2$ where f_1 is of type (a) and f_2 is of type (b).

REMARKS. (i) The dimension of H must be ≥ 3 because every holomorphic map on \mathbb{C} with a nowhere zero derivative is conformal.

- (ii) For \mathbb{R}^n , the theorem is known even for f just C^1 [2].
- (iii) The proof of Nevanlinna depends on f being C^4 .

In this paper we outline how a technique in [3], when recognized as applying to conformal mappings and suitably modified, can be used to prove the theorem with f only C^3 .

2. Notation and definitions. H will be a real infinite dimensional Hilbert space and U a connected open subset. A map is C^n if it is n times continuously Fréchet differentiable as in [4]. A C^1 function $f: U \longrightarrow H$ is called conformal if Df_r is a linear isomorphism and there is a function $c: U \longrightarrow \mathbb{R}$ such that

$$\langle Df_x(h_1), Df_x(h_2)\rangle = c(x) \, \langle h_1 \,, \, h_2 \rangle$$

for all x in U and all h_1 , h_2 in H. (This definition is merely a reformulation of the more geometric definition that says f preserves the angle between two curves meeting at a point.) Banach and Hilbert manifolds are defined as in [4].

By an inversion with respect to the sphere $\{x \in H: ||x-p|| = r\}$ I mean the map $x \longrightarrow x'$ where

- (i) $||x p|| ||x' p|| = r^2$ and
- (ii) x and x' lie on the same ray originating at p. The analytic form of such an inversion is

$$x \longrightarrow r^2(x-p)||x-p||^{-2} + p.$$

AMS (MOS) subject classifications (1970). Primary 58B10, 58B20, 46C10.

- 3. Outline of the proof. (1) We develop the theory of connections for Banach manifolds and specialize to the case of Riemannian connections for a C^3 Hilbert manifold. For each chart $(W, \psi \colon W \to H)$ of the manifold a C^1 function Γ , called the Christoffel function, is defined on $\psi(W)$ such that $\Gamma(y)$ is a continuous H-valued bilinear map on H for each y in $\psi(W)$. The collection of such Γ (together with a coherence property on the overlap of charts) determines and is determined by the connection.
- (2) Let $d(x) = 1/\sqrt{c(x)}$. (Since Df_x is one-one, c(x) is not zero.) For example if f is the affine map $f(x) = rL_0(x) + h_0$ where r is real, L_0 unitary and $h_0 \in H$, we have d(x) = 1/r. On the other hand for the inversion

$$f(x) = r^{2}(x - p)||x - p||^{-2} + p$$

we have $d(x) = \langle x - p, x - p \rangle / r^2$.

Since Hilbert space with the inner product as Riemannian metric has zero curvature we get the following equation for d:

(*)
$$2D^2d_x(h_1, h_2) = 2Dd_x(h_1)Dd_x(h_2)/d(x) + Dd_x[\Gamma_x(h_1, h_2)].$$

To derive this we use the fact that the dimension of H is ≥ 3 .

(3) We prove that in a neighborhood of each point x_0 , the above equation has a unique solution

$$(**) d(x) = A \langle x - x_0, x - x_0 \rangle + \langle b, x - x_0 \rangle + C$$

where $C = d(x_0)$, b is the element in H corresponding to Dd_{x_0} under the canonical isomorphism of H with its dual H^* and $A = \langle b, b \rangle / 4C$.

The method of proof is to start at x_0 where (**) is true and then to show that equality continues as we move in any direction. Pick a unit vector u and define $g_1(t)=d(x_0+tu)$. Using (*) the function $K_1(t)=[g_1(t),Dg_1(t)]\in R\times H^*$ is shown to satisfy a differential equation of the form K'(t)=F[t,K(t)] with initial condition $K(0)=[d(x_0),Dd_{x_0}]$. Letting $g_2(t)=A\langle tu,tu\rangle+\langle b,tu\rangle+C$ we verify that $K_2(t)=[g_2(t),Dg_2(t)]$ satisfies the same differential equation and initial condition. The equality of g_1 and g_2 follows from uniqueness.

- (4) Using the connectedness of U we get that the local solution in (3) is actually a global solution for d.
- (5) We show that if $f: U \longrightarrow H$ and $g: U \longrightarrow H$ are C^3 conformal maps such that g is one-one and $d_f = d_g$ (where d_f is the d corresponding to f), then there is a vector h in H and unitary operator L such that $f = L \circ g + h$.
- (6) From (4) we know that $d(x) = A\langle x x_0, x x_0 \rangle + \langle b, x x_0 \rangle + C$. Case 1. b = 0 and $A = \langle b, b \rangle / 4C = 0$ in which case d(x) = C has the same form as the d for an affine map as in (2), if C = 1/r.

Case 2. $b \neq 0$ and thus $A \neq 0$. Then $d(x) = \langle x - p_0, x - p_0 \rangle / r$ where $r = 4C/\langle b, b \rangle$ and $p = x_0 + 2Cb/\langle b, b \rangle$. This is the same form as the d for an inversion as in (2) above.

(7) Combining (6) with (5) we get our theorem.

REFERENCES

- 1. R. Nevanlinna, On differentiable mappings, Analytic Functions, Princeton Univ. Press, Princeton, N. J., 1960, pp. 3-9. MR 22 #7075.
- 2. Ju. G. Rešetnjak, On conformal mappings of a space, Dokl. Akad. Nauk SSSR 130 (1960), 1196-1198 = Soviet Math. Dokl. 1 (1960), 153-155. MR 22 #9935.
- 3. L. Eisenhart, Riemannian geometry, Princeton Univ. Press, Princeton, N. J. 1960, p. 85.
- 4. S. Lang, Introduction to differentiable manifolds, Interscience, New York, 1962. MR 27 #5192.

DEPARTMENT OF MATHEMATICS, TUFTS UNIVERSITY, MEDFORD, MASSA-CHUSETTS 02155

Current address: 329A Summit Ave., Brookline, Massachusetts