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1. Introduction. In [1] Nevanlinna gave a simple proof of the following 
theorem of Liouville. (Precise definitions appear below.) 

THEOREM 1. Suppose U is a connected open set in a real Hubert space H 
of dimension > 3 (including °°) and f:U —> H is C4 and conformai Then f is 
either 

(a) an affine map whose linear part is a constant multiple of a unitary 

operator, 

(b) an inversion with respect to a sphere, 

(c) / i ° f2 where ft is of type (a) and f2 is of type (b). 

REMARKS, (i) The dimension of H must be > 3 because every holomorphic 
map on C with a nowhere zero derivative is conformai. 

(ii) For Rn, the theorem is known even for/just C1 [2]. 
(iii) The proof of Nevanlinna depends on ƒ being C4 . 
In this paper we outline how a technique in [3], when recognized as apply­

ing to conformai mappings and suitably modified, can be used to prove the theo­
rem with ƒ only C3 . 

2. Notation and definitions. H will be a real infinite dimensional Hubert 
space and U a connected open subset. A map is Cn if it is n times continuously 
Fréchet differentiable as in [4]. A C 1 function ƒ: U—• H is called conformai if 
Dfx is a linear isomorphism and there is a function c : U —• R such that 

(Dfx(hi)9Dfx(h2)) = c(x)(hl,h2) 

for all x in U and all ht, h2 in H. (This definition is merely a reformulation of 
the more geometric definition that says ƒ preserves the angle between two curves 
meeting at a point.) Banach and Hubert manifolds are defined as in [4]. 

By an inversion with respect to the sphere {x G H: \\x - p\\ = r} I mean 
the map x —• x' where 

(i) \\x-p\\ | | x ' - p | | = r2 and 

(ii) x and x' lie on the same ray originating at p. The analytic form of 
such an inversion is 

x—>r2(x-p)\\x-p\\~~2 +p. 
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3. Outline of the proof. (1) We develop the theory of connections for 
Banach manifolds and specialize to the case of Riemannian connections for a C3 

Hubert manifold. For each chart (W, i//: W —» //) of the manifold a C1 function 
T, called the Christoffel function, is defined on \p(W) such that T(y) is a contin­
uous //-valued bilinear map on H for each y in \p(W). The collection of such F 
(together with a coherence property on the overlap of charts) determines and is 
determined by the connection. 

(2) Let d(x) = l/\/c(x). (Since Dfx is one-one, c(x) is not zero.) For 
example if ƒ is the affine map fix) = rL0(x) + h0 where r is real, L0 unitary and 
h0 E //, we have dix) — 1/r. On the other hand for the inversion 

f(x) = r2(x - p)\\x - p\r2 + p 

we have d(x) = (x - p, x - p)/r2. 
Since Hilbert space with the inner product as Riemannian metric has zero 

curvature we get the following equation for d: 

(*) 2D2dx(h t,h2) = 2Ddx(h , )Ddx(h2)/d(x) + Ddx [Fx(h lth2)]. 

To derive this we use the fact that the dimension of //is > 3. 
(3) We prove that in a neighborhood of each point x0, the above equation 

has a unique solution 

(**) d(x) - A(x - x 0 , x -x0) + (b, x -x0> + C 

where C = d(x0), b is the element in // corresponding to DdXQ under the canon­
ical isomorphism of H with its dual //* and A — (b, b)/4C. 

The method of proof is to start at x0 where (**) is true and then to show 
that equality continues as we move in any direction. Pick a unit vector u and 
define gx(t) = d(x0 + tu). Using (*) the function Kt(t) = \gx(t)9 Dgx(t)] G R 
x //* is shown to satisfy a differential equation of the form K\t) = F[t, K{t)] 
with initial condition AT(0) = [d(x0)9 DdXQ]. Letting g2(t) = A (tu, tu) + (b, tu) 
+ C we verify that K2(t) = fe2(0» ^ 2 ( 0 ] satisfies the same differential equation 
and initial condition. The equality of gx and g2 follows from uniqueness. 

(4) Using the connectedness of U we get that the local solution in (3) is 
actually a global solution for d. 

(5) We show that if/: U—* H and g: U -+ H are C3 conformai maps 
such that g is one-one and df = dg (where df is the d corresponding to ƒ), then 
there is a vector h in H and unitary operator L such that f=L<>g + h. 

(6) From (4) we know that d(x) = A(x - x0, x - x0) + (b, x - x0> + C 
Case 1.6 = 0 and A = (b, b)/4C = 0 in which case dix) = C has the same 

form as the d for an affine map as in (2), if C = 1/r. 
Gzse 2. 6 ^ 0 and thus A ^ 0. Then d(x) = Or - pQ, x - p0>/r where r = 

4C/<6, 6) and p = x0 + 2Cb/(b, b). This is the same form as the J for an inver­
sion as in (2) above. 
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(7) Combining (6) with (5) we get our theorem. 
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