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Chern and Lashof [1] proved several inequalities concerning the total cur­
vature of an immersed manifold. Their second result is a weak generalization of 
the Fary-Milnor theorem [2] , [5] for closed space curves. In this paper, a 
stronger result (Corollary 1), the complete homotopy extension, is stated and 
proved. I would like to thank Bill Pohl for conversations surrounding the formu­
lation and proof of this result. 

I. Background. Let x: M1 —• En+N be a C°°-immersion into Euclidean 
space of dimension n + N (N > 0); and Bv be the bundle of unit normal vectors 
of x(Mn). A point of Bv is a pair (p9 v(p))9 where v(p) is a unit normal vector to 
x(Mn) at x(p). The map F: Bp - * S%+N~l, into the unit sphere of En+N', is 
defined by v(p, v(p)) = v(p). 

The Lipschitz-Killing curvature [1], G(p, v) at v(p), is then given by the v-

ratio of corresponding volume elements in SQ+N~1 and Bv. The total curvature 

of Mn at p is K*(p) = ƒ \G(p, v)\ do, the integral being taken over the sphere of 
unit normal vectors at x(p). The total curvature of Mn is given by AT* = K*{M) 

= fP^M^(p)dK 
The first two Chern-Lashof theorems can be stated as: Given Mn compact 

without boundary, and cirri) the area of the unit hypersphere S™ C Em + 1, then: 

COROLLARY 1. K*(M) >2c(n+N- 1). 

COROLLARY 2. If K*(M) < 3c(n + N - 1), then M is homeomorphic to Sn. 

The essential argument of their proof can be summarized as a lemma. 

LEMMA 1. If for almost all v0 E S%+N~1, the height function (v0, ->: 
x(M) —> R has at least k distinct critical points, then K*(M) > kc(n +N-1). 

Their method is an adaptation of the technique used by Fenchel [3] . This 
fact suggested that Corollary 2 is a weak generalization of Fary-Milnor. 

II. The main result. In this section, a curvature inequality is given which 
distinguishes between different knottings of Sn. The method, based on 
Chern-Lashof, takes off from a remark of Fox [4] in which P. L. approximations 
yield the corresponding S1 result. 

AMS (MOS) subject classifications (1970). Primary 53C65; Secondary 57C45, 57D40. 
Key words and phrases. Fary-Milnor theorem, normal bundle, Gauss map, knot group, 

Morse equality. 
Copyright © 1976, American Mathematical Society 

140 



THE TOTAL CURVATURE OF KNOTTED SPHERES 141 

For simplicity of presentation, attention is restricted to knotted spheres; 
that is, Mn = Sn and codimension TV = 2. Recall, for a mapping x: Sn —* 
En + 2

9 the group of the map is n(x) = n1 [En+2 - x(Sn)]. 

DEFINITION 1. g(x) = the minimal number of generators needed to present 
TT(X). 

THEOREM I. K*(Sn) > 2g(x)c(n + 1). 

COROLLARY 1. If K*(Sn) < 4c(n + 1), then n(x) = Z. 

The corollary follows trivially since any 7r(̂ r) has Z as a subgroup. Theo­
rem I is a consequence of Lemma 1 combined with the obvious. 

PROPOSITION 1. For almost all v0 G S% + *, the height function <u0, ->: 
x(Sn) —> R has at least 2g(x) distinct critical points. 

PROOF. Since we only need to account for an open dense subset of the 
u0 's, fix a height <t>0, -> which is Morse. Choose a basepoint, *, which is "higher" 
than x(Sn). The proposition is shown by constructing a canonical set of gener­
ators for 7r(x, *), and deforming an arbitrary loop, y E ir(x, *), into a sum of 
these. The deformation is first described. The required generating set will be 
obvious at the outcome. 

Since * is higher than x(Sn), assume that the loop 7 is strictly lower than *. 
Now, define a lifting-homotopy as a homotopy H(x, t) which is always moving to 
higher levels, that is one where (u0, H(x, t)) is nondecreasing in t for all fixed x 

in the loop parametrization. The problem involved is to determine the obstruc­
tions in x(Sn) preventing 7 from being pulled up all the way. Clearly, any such 
phenomenon will be local. The crucial observation is that 7 can only be "caught" 
on maximums of <u0, ->: x(Sn) —• R. 

Take a collection of open collared balls, Ut C Wt, in En + 2 such that: (1) 
{U(} is a finite covering of a simply-connected volume enclosing x(Sn)\ (2) each 
critical point p is contained in only one ball Wt\ and (3) there are Morse-coordi­
nates for (Wt n x(Sn)) whose axes are strictly monotonie w.r.t <t>0, ->. Clearly, 
any part of 7 lying in a Ut not containing a critical point can be lifted out of the 
ball. This means that attention can be focused on the Ut, . . . , Uk containing 

Now, suppose that Pj is not a maximum. Then the height function is in­
creasing on at least one Morse-axis, and the piece of x(Sn) locally obstructing 7 
has at least codim 3. There are index(py) > 0 degrees of freedom with which to 
translate a segment of 7 and lift it into the collar (Wj - Uj) such that it lies above 
Uj n x(Sn). After a finite number of such movements, 7 will only be obstructed 
by balls containing maximums. 

Next, assign a unique 'canonical' element of TT(X) to each maximum. For 
Pj a maximum, fix a loop 7;- which passes under p^ only once. This can be ar-
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ranged (inside Wj) by adding a lower hemisphere to Uj O x(Sn)9 and taking jj as 
a generator which leaves Wj through the north pole and is increasing till *. Any 
segments of y stuck in Uj can be lined up (inside Wj) with 7;-. The rest of the 
loop goes up and away. Hence, the collection {7^} is a set of generators for 
TT(X). 

Summarizing, any <u0, -> has at least g(x) maximums. Next, if Ct = the 
number of critical points of index /, then the Morse equality gives: (1) for n 

odd, S"= 1(-1) , + 1C / = C0 >g(x), and there are at least g(x) critical points other 
than maximums; (2) for n even, there is at least one minimum, hence: 
Sfsr1

1(-l)'+1C l f = C0 + Cn - 2, and there are at least (g(x) - 1) critical points 
other than maximums and minimums. In either case, the proof is complete. 
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