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This note announces a new construction in the theory of 4-manifolds. 
Let \p\ T3 —» T3, T3 = S1 x S1 x S1, the torus of dimension three, be a 

diffeomorphism, with ip(x) = x, some x E T 3 , Let A be a matrix for the map y 
induces on nx T

3 = Z ® Z ® Z. Assume that det A = - 1 and det(7 - A2) = ±1, 
ƒ = identity matrix. It is easy to see that such a map \p exists. 

Let the manifold M be obtained from T3 x [0, 1] by identifying (y, 0) 
with (<p(y), 1). Let M0 be the complement of the interior of a tubular neighbor­
hood of the image of {x} x [0, 1] in the quotients. Clearly bM0 can be iden­
tified with the boundary S(p) of the nontrivial disk bundle D(p) over S1 with 
group 0(4). There is a (canonical) map h: M0 —> D(p) restricting to the identity 
on S(p). 

Let N be any connected nonorientable 4-manifold, and let N0 be the com­
plement of the interior of a tubular neighborhood of a circle in N representing an 
element a. E nxN that reverses orientation. Then bN0 = 5(p). Let 

QN = QN,A =N0US(p)M0 

and let hN = id^ U hQ; i.e., QN is obtained from the disjoint union of N0 and 
M0 by identifying their boundaries. 

THEOREM. Suppose a has order two. Then 
(i) hN is a simple homotopy equivalence, 

(ii) hN is not homotopic to a diffeomorphism (or even to a PL homeo-
morphism). 

For example, let N be real projective 4-space. Then QN is not diffeomor-
phic or even PL homeomorphic or PL s-cobordant to N. In fact, there are exact­
ly two s-cobordism classes of homotopy 4-dimensional real projective spaces. In 
particular one has 

THEOREM. There is a smooth free action of the group of order two, on a 
homotopy 4-sphere, that is not equivariantly diffeomorphic (or even PL homeo­
morphic) to a linear action on the standard 4-sphere. 
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