ON THE NUMBER OF SOLUTIONS TO PLATEAU'S PROBLEM

BY A. J. TROMBA¹

Communicated by S. S. Chern, August 28, 1975

Introduction. Since its formulation by Plateau in the 19th century, little (see [2], [4]) has been known about the number of simply connected minimal surfaces spanning a simple closed curve $\Gamma \subset R^3$. Existence was proved in the thirties by J. Douglas [1] and T. Radó [5]. In the paragraphs below we indicate how a new topological theory partially describes the way in which the number of minimal surfaces spanning a curve changes as the curve changes.

I. Formulation of the problem. Let $H^{r+2}(S^1, R^n)$ be the Sobolev Hilbert space of H^{r+2} maps the unit circle S^1 into R^n , with $r \ge 5$. Let $A = \operatorname{Emb}(S^1, R^3)$ be the open submanifold of $H^{r+2}(S^1, R^3)$ which consists of embeddings of S^1 into R^3 . Let Γ be the image of such an embedding $\alpha \in A$. Set η^{α} to be the component of $H^2(S^1, \Gamma)$ { the C^r Hilbert manifold of H^2 maps from S^1 to Γ } determined by the embedding α . Let M^{α} be the open submanifold of η^{α} consisting of the diffeomorphisms. For every $u \in H^2(S^1, \Gamma) \subset H^2(S^1, R^3)$ we can extend $u = (u_1, \ldots, u_n)$ harmonically to the disc \mathcal{D} . Define the smooth energy functional E_{α} : $\eta^{\alpha} \longrightarrow R$ by

$$E_{\alpha}(u) = \frac{1}{2} \sum_{i=1}^{3} \int_{\mathcal{D}} \left[\left(\frac{\partial u_{i}}{\partial x} \right)^{2} + \left(\frac{\partial u_{i}}{\partial y} \right)^{2} \right] dx dy.$$

Denote by \overline{M}^{α} the closure of M^{α} in η^{α} .

- J. Douglas showed, in his pioneering work [1], that the critical points of E_{α} in $\overline{\mathbb{M}}^{\alpha}$ are simply connected minimal surfaces spanning Γ . We are interested in obtaining information on the number of critical points of E_{α} on $\overline{\mathbb{M}}^{\alpha}$.
- II. The theory. Let M be a connected smooth Banach manifold and $K: T^2M \to TM$ a connection map. In [6] the author defines a smooth vector field $X: M \to TM$ to be Fredholm with respect to K if for each $p \in M$ the covariant derivative of X with respect to K, $\nabla X(p)$, which is a linear map of T_pM to itself, is linear Fredholm. By the *index of* X we mean the dim ker $\nabla X(p)$ dim coker $\nabla X(p)$. A Fredholm vector field is Palais-Smale if $\nabla X(p)$ is of the form I + C, where C is a completely continuous linear map. Palais-Smale vector fields have index zero.

AMS (MOS) subject classifications (1970). Primary 35G20, 49F10, 58E15; Secondary 57D25.

¹Research partially supported by National Science Foundation grants GP-39060 and MPS72-05055 A02.

Let X be a Palais-Smale vector field on M with finitely many isolated zeros in the interior of M. Then using the degree theory developed in [3] one can define the degree of X at a zero p, which we denote by $(\deg X)(p)$. The Euler characteristic $\chi(X)$ is defined to be

$$\chi(X) = \sum_{p \in zeros(X)} (\deg X)(p).$$

If X has no zeros then $\chi(X) = 0$. By using elementary transversality techniques, the Euler characteristic can be defined for Palais-Smale vector fields with a compact set of zeros in the interior of M.

III. Applications.

THEOREM 1. There exists a smooth connection K_{α} on the second tangent bundle $T^2\eta^{\alpha}$ and a smooth vector field X^{α} : $\eta^{\alpha} \to T\eta^{\alpha}$ which is Palais-Smale with respect to the connection K_{α} and whose zeros are precisely all the critical points of E_{α} . Moreover, $X^{\alpha}(E_{\alpha}) = dE_{\alpha}(u)(X^{\alpha}(u)) \geq 0$.

DEFINITION. Let $u \in \eta^{\alpha}$ be a minimal surface. A branch point $p \in \mathcal{D}$ of u is a point where the map $u \colon \mathcal{D} \to \mathbb{R}^3$ fails to be an immersion. An embedding $\alpha \in A$ is fine if all minimal surfaces spanning $\Gamma = \alpha(S^1)$ are free of branch points.

In [4] Radó showed that if α is not "too complicated" then α is fine. In particular, he showed that α is fine if there existed no point $q \in \mathbb{R}^3$ such that every hyperplane through q intersected Γ in at least four points.

THEOREM 2. Let $F \subset A$ be the set of fine embeddings. Then F is open in A, and hence open in $H^{r+2}(S^1, \mathbb{R}^3)$.

CONJECTURE. F is dense in A, or perhaps the open set of curves which admit no minimal surfaces with boundary branch points is dense in A.

Let G be the three dimensional noncompact Lie group of bijective holomorphic maps of the disc onto itself. The functional E_{α} and the vector field X^{α} of Theorem 1 will be equivariant with respect to the action of G. Therefore, there is no hope that the critical points of E_{α} in $\overline{\mathbb{M}}^{\alpha}$ will be isolated since the orbit of any critical point will consist of critical points. Applying general transversality techniques we obtain

THEOREM 3. For an open dense set of embeddings $V \subset F$ the zeros of X^{α} , $\alpha \in V$, in M^{α} are nondegenerate (and therefore isolated) three dimensional submanifolds of η^{α} . Moreover, for such $\alpha \in V$ there are only finitely many such critical submanifolds.

In general minimal surfaces on the same orbit are identified. Doing this we find

THEOREM 4. If $\alpha \in V$ and $\gamma \in F$, $\gamma = \alpha + \rho$, is sufficiently close to α , then the minimal surfaces spanning γ are smooth functions of the parameter ρ .

68 A. J. TROMBA

COROLLARY. If $\alpha \in V$ and $\gamma \in F$ is sufficiently close to α , then the geometric number of minimal surfaces spanning γ is equal to the number spanning α .

COROLLARY. Any curve sufficiently close to a plane curve has a unique minimal surface spanning it.

Let γ belong to F. We can define the Euler-characteristic of the corresponding vector field X^{γ} , and we take this to be the definition of the *algebraic number* of minimal surfaces spanning the image $\gamma(S^1)$.

Applying an Euler-Hopf theorem for Palais-Smale vector fields we get

THEOREM 5. Let γ_0 and γ_1 be fine embeddings. Suppose further that γ_0 is isotopic to γ_1 through a family γ_t , $0 \le t \le 1$, of fine embeddings. Then the algebraic number of minimal surfaces spanning γ_0 is equal to the number spanning γ_1 .

REFERENCES

- 1. J. Douglas, Solution to the problem of Plateau, Trans. Amer. Math. Soc. 33 (1931), 263-321.
- 2. R. Courant, Dirichlet's principle, conformal mapping, and minimal surfaces, Interscience, New York, 1950. MR 12, 90.
- 3. K. D. Elworthy and A. J. Tromba, Differentiable structures and Fredholm maps on Banach manifolds, Proc. Sympos. Pure Math., vol. 15, Amer. Math. Soc., Providence, R, I., 1970, pp. 45-94. MR 41 #9299.
- 4. T. Rádo, On the problem of Plateau, Ergebnisse der Mathematik und Ihrer Grenzgebiete, Springer-Verlag, Berlin, 1933.
- 5. ———, The problem of least area and the problem of Plateau, Math. Z. 32 (1930), 763-796.
- 6. A. Tromba, Fredholm vector fields and a transversality theorem, J. Functional Analysis (to appear).
- 7. R. Bohme, Die Zusammenhangskomponenten der Lösungen analytischer Plateauprobleme, Math. 133 (1973), 31-40. MR 49 #11363.
- 8. R. Bohme and F. Tomi, Zur Struktur der Lösungsmenge des Plateauproblems, Math. Z. 133 (1973), 1-29. MR 49 #11362.
- 9. F. Tomi, On the local uniqueness of the problem of least area, Arch. Rational Mech. Anal. 52 (1973), 312-318. MR 49 #11364.

SCHOOL OF MATHEMATICS, INSTITUTE FOR ADVANCED STUDY, PRINCETON, NEW JERSEY 08540

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF CALIFORNIA, SANTA CRUZ, CALIFORNIA 95064