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Following Chapman [3] we define a continuous map ƒ: X —• Y to be 
proper iff for each compactum B C Y there exists a compactum A C X such 
that ƒ(X\A) n B = 0. (This is just a reformulation of the usual notion of a 
proper map.) Then maps ƒ, g: X —• Y are said to be weakly properly homotopic 
iff for each compactum B C Y there exists a compactum A C X and a homotopy 
(dependent on B) F = {F,}: X x I —» Y (where ƒ = [0, 1] ) such that F0 = ƒ, 
Fj = g, and F((X\,4) x 7) n J5 = 0. If, in fact, there exists a proper map 
F: X x I —+ Y which satisfies F0 = ƒ and F t = g, then we say that ƒ and g are 
properly homotopic. The notions of wear/: proper homotopy equivalence and 
proper homotopy equivalence are now defined in the obvious way. 

In [7, pp. 489—491] Siebenmann obtained various convenient criteria for 
a proper map of locally finite simplicial complexes to be a proper homotopy 
equivalence. Siebenmann's proof seemed to require a finite dimensional assump
tion. Later, E. Brown [2, p. 34], and Farrell, Taylor and Wagoner [6] claimed 
to be able to remove the finite dimensional assumption. In [4] we give an 
example, using an interesting map of J. F. Adams [1], which shows that the 
finite dimensional assumption is necessary. On the positive side, we prove in 
[4] the following useful (see [5] ) Whitehead type theorem. 

THEOREM. Let f: X —» Y be a proper map of locally finite simplicial 
complexes such that f is a weak proper homotopy equivalence. Then f is weakly 
properly homotopic to a proper homotopy equivalence. 
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