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Bifurcation branches of solutions of nonlinear (differential) equations depen­
dent on a real-parameter is now a well developed theory. (See [4] for general as­
pects, [3] for existence and [1] for examples.) However, what is known is most­
ly bifurcate solutions in a neighbourhood of the bifurcation points, and there ex­
ist few numerical methods that allow us to obtain these branches. 

The method we propose allows us to obtain the "regular" parts of these 
branches, that means without "critical" points, as solutions of a Cauchy problem 
in which the real bifurcation parameter is the variable. 

1. Definitions. Let X and Z be two real-Banach spaces and ƒ a continuously 
Fréchet-differentiable mapping from X x R to Z. Dx ƒ denotes the partial deriva­
tive in x. We seek solutions (x, y) in X x R of the following equation: 

(1) f(x. y) = 0; 
y is often called the bifurcation parameter. Let S be the set of these solutions 
and C the subset of S for which Dxf{xt y) is not a homeomorphism (C is the set 
of "critical solutions"); then every maximal (with respect to the relation of inclu­
sion) connected subset B of S - C is called bifurcation bough. 

2. One property of bifurcation boughs. We shall use the following classical 
result (Lemma 1) to prove the main theorem. 

LEMMA 1. Let E be a separate, connected, topological space, and h a local 
homeomorphism from E to R; then h is a homeomorphism from E onto h(E). 

The theorem which gives the main property of bifurcation boughs is: 

THEOREM 1. For every bifurcation bough B, let I (resp. K) be its projec­
tion on R (resp. X). There exists a unique continuously differentiable mapping 
V from I to K such that: 

(i) The graph ofVinXxR is B. 

(ii) * 'G0 = - [Dx f(*(y),y)]"1 o D2f(*(y), y). 

PROOF. At every point (x, y) of B, we can apply the implicit function theo­
rem; there exists an open interval Iy CR including y, and a unique mapping \p 
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from I to X, such that y(y) = x and f(if{z), z) = 0 Vz G Iy\ furthermore <p is 

continuously differentiate in Iy and its derivative at every point z of Iy is given 

by 

<p'(z) = - [Z)1 /(tfz), z)]"1 o Z)2/(^z), z). 

Consider now the projection from X x R to R and its restriction p to B. Then 
for every point (x, y) of B, there exists an open interval / ^ C R containing y, 
such that p is a one-to-one mapping from p~x(I ) onto ƒ . Furthermore in / , 
there exists an open subinterval Jy containing y such that p~l(Jy) C B (Dxf is 
locally invertible). As p is continuous we are in the situation of Lemma 1. 
Hence, p is a homeomorphism from B onto I. Now, if p denotes the projection 
from B to K we can conclude defining ^ by ^(y) = p ° p~x(y)-

COROLLARY 1. Assume the mapping f is k-times continuously differentiatie 
in X x R, then the mapping V of Theorem 1 is k-times continuously differentia-
ble. 

3. A computing method for bifurcation boughs. Seeing Theorem 1 and Cor­
ollary 1, and since the set: {Dtf(x, y)\(x, y) G X x R with Dtf(x, y) homeo­
morphism} is open in L(X, R; Z), there is an open neighbourhood l / i n l x R of 
every bifurcation bough where the mapping 

(x, y)*-+- [Dxf(x, y)]'1 <> D2f(x, y) 

is defined and smooth enough. In order to obtain the bifurcation bough contain­
ing the point (x0,y0) we can integrate the differential equation 

( * ' 0 ) = - [ £ , ƒ ( * < » , y)]'1 °D2m(y),y), 
(2) 

( *(y0) = *o 
using a Runge-Kutta type method (see [2]). 

4. Numerical results. We study the equation 

(3) s = yt + Y4S2, t = ys + %t2; 
here X = Z = R2 and x = (s, t). 

The bifurcation points are (0, 0, - 1) and (0, 0, 1) in X x R. The solutions 
of (3) are 

(3.0) the trivial solution s = t = 0 Vy G R, 

(3.1) s = t = 4(l-y) VyGR, 

(if a = V - 3 ^ z -2y + 1, 

(3.2) h = 2(y + 1 ± a) , , 
) ^ V^ € [-1 ,1/3] , 
If = 2 C + 1 + <*)• 
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We computed these solutions, integrating (2) by a fourth order Runge-Kutta 
method. The results are in Table 1. "ôy" denotes the step of the Runge-Kutta 
method and "Error" the value of \s - sr\ + \t - tr\ where (s, i) are the compo­
nents of the exact solution, and (sr, tr) the components of the computed solu­
tion for the value y 4- by of the bifurcation parameter. 

TABLE 1 

^0 fy y "*" ày Error 

0.00 -0 .10 -0 .10 0.82 x 10"5 

-0 .50 -0 .10 -0 .60 0.35 x 1(T5 

0.20 -0.01 0.19 0.59 x 10"7 

0.20 -0 .10 0.10 0.20 x 1(T3 

0.20 -0 .20 0.00 0.30 x 10"2 

0.20 -0 .40 -0 .20 0.31 x 10"1 

We tried this method with many other examples and all the results are 
equally valid. 
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