
BULLETIN OF THE 
AMERICAN MATHEMATICAL SOCIETY 
Volume 81, Number 6, November 1975 

A PRIORI ESTIMATES, GEOMETRIC EFFECTS AND 
ASYMPTOTIC BEHAVIOR 

BY FRITZ JOHN 

Many physical phenomena can be described by a partial differential 
equation Pu=0. Here P denotes some differential operator or system of 
such operators, and u, the unknown function, is either a scalar or a vector. 
The differential equation connects the derivatives of u at each point of its 
domain D. The mathematician is interested in the global consequences of 
this local constraint, especially those leading to a better understanding of 
the physical processes described. There are many different angles from 
which to look at this subject. In this talk I intend to discuss some particular 
ones that have to do with the use of a priori inequalities, either implied by 
the differential equation or postulated for u. Some general remarks will lead 
up to their use. 

Naturally, the first impulse of a mathematician on being confronted with 
an equation Pu = 0 is to solve it. Usually,1 the equation is not sufficient to 
determine u, and we have a whole infinite family S of solutions u. To 
characterize the individual members of S, we need additional pieces of 
information, data ƒ taken from a family <f>. Ideally, we generate the general 
element u of S by a continuous 1-1 mapping T:</>—»S. The "problem" of 
constructing u from ƒ is then "correctly-set" or "well-posed" for the 
equation Pu = 0 in the sense of Hadamard [3], [4]. The best known example 
is the Laplace equation Au = 0 in a bounded domain D with continuous 
boundary values ƒ prescribed on the boundary B of D. Such a mapping of 
data ƒ onto solutions u not only has an esthetic appeal, but in many cases a 
physical interpretation as well, in which ƒ and u somewhat play the roles of 
cause and effect, indicating perhaps some pre-established harmony between 
mathematics and the physical world. 

Progress in the solution of well-posed problems has been spectacular. 
Still, this should not blind us to the fact that in applications the role of the 
well-posed problem is very limited (see [5]). In most cases, the assumption 
that we have adequate knowledge of the data ƒ to generate u is fiction. 
Moreover, generating the solution u by solving some particular well-posed 
problem may contribute very little to a real understanding of the constraint 
Pu=0, beyond the insight that nice f produce nice u. One might even say 
that the better behaved the solution of a problem, the more likely it is to be 
devoid of qualitative features the mind can get hold of. To produce some 
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contrast in this gray featureless landscape of solutions it is useful to consider 
extreme situations, that amplify some effects. For an elementary illustration, 
we might think of the problem of solving n linear algebraic equations 
Zk=i aikxk = yh i = l,- • •, n, in n unknowns xk, which becomes of theoretical 
interest only when the determinant is zero or very small. In our case, 
extreme situations correspond to some degeneracy either in the solution u, 
or in the operator P, or in the domain D. Such degeneracies bring out 
striking new types of behavior, often concentrated along surfaces and 
leading to simple geometric interpretations. This behavior is concealed in 
the general solution u, which represents a compromise between various 
extremes. A good deal of mathematical physics consists of an analysis of the 
asymptotic behavior produced by extreme conditions of various kinds, such 
as shock waves in gases [6], [7], electromagnetic waves of high frequency 
(leading to "geometrical optics" [8]), very steep waves on the surface of 
water ("bores" [9]), flows of liquids of very low viscosity [10], or deforma­
tions of very thin elastic rods [11]. 

In deriving asymptotic behavior, early pioneers relied as much on physical 
intuition as on mathematical arguments, neglecting some quantity here but 
not there. Now, in principle, the differential equations (if they are to be 
trusted) already contain information on all possible situations, and any 
asymptotic behavior should follow from those equations without any appeal 
to intuition. Such a rigorous deduction is not just an exercise in logic. 
Physical intuition may fail, and even where it does not, it is only mathemati­
cal analysis that can tell us the exact circumstances in which the asymptotic 
behavior occurs. 

During the last decades, applied mathematicians have been highly suc­
cessful in reviewing and extending many classical results (some going back 
more than a century), and in initiating new lines of investigation. They have 
been helped by advances made in the theory of partial differential equations, 
particularly in estimating solutions. Asymptotic behavior ordinarily depends 
on the fact that certain terms in the equation Pu = 0 become negligible, while 
others can be combined with certain of the boundary conditions to yield a 
new asymptotically valid system of equations P'u = 0. Now, the mere fact 
that the coefficient of some derivative is small does not imply that the whole 
term is small, unless we somehow restrain the growth of derivatives. Here is 
where we need a priori estimates that permit us to decide on the relative 
orders of magnitude of the various derivatives of u occurring in Pu. 

Estimating is the central activity in the theory of partial differential 
equations; it serves to justify both abstract existence proofs and numerical 
computations. Estimates, as often presented in a string of lemmas, may look 
singularly unattractive, lacking the elegance of giving the best constants, and 
merely concerned with orders of magnitude. They do, however, express 
deep truths and lead to results not easily obtainable by algebraic manipula­
tions of the differential operators. The most complete estimates exist for 
differential operators P of the type called elliptic, the ones usually encoun­
tered in the description of equilibrium states [12], [13], [14]. For such P, one 
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can estimate the derivatives of u in terms of Pu and u or of Pu and 
boundary data ƒ, using a variety of norms. For example, for a solution u of 
the n-dimensional Laplace equation Au = 0 in a domain D, we have for any 
kth order derivative the Cauchy estimate 

(1) \u™(x)\ < ( 2 r « " + 2)/2) J _ V u U j |U (Xj | = U1/2r((n + l)/2)d(x); U ' 

where d(x) denotes the distance of the point x from the boundary B of D, 
and U is the supremum of \u\ in D. For more general linear (and semilinear) 
elliptic equations Pu=0, we have similar looking estimates of the form 

(2) u(k\x)=0(U/(L(x))k) 

where 17 and u(k) have the same meaning as before, and a suitable "wave 
length" L(x) can be computed a priori in terms of the distance d(x) from 
the boundary B and of "representative lengths" À, JUL associated with the 
operator P by the formula 

(3) L (x ) = Ad(x)/(jLL + d(x)).2 

Formula (3) reflects the decay of outside influences on the solution u with 
increasing distance from the boundary. For d»jui, the wave length L is of the 
order of \; for d«/m it is essentially of order d, leading to a break down of 
the estimate (2), as x approaches the boundary.3 

As an example, we consider the scalar two-dimensional equation 

(4) Pu = h2A2u-TAu = 0 

which expresses the equilibrium condition for the normal displacement u of 
a plate of thickness h under uniform tension T, when no forces act on the 
faces of the plate. The variable x=(xi,x2) varies over the domain D with 
boundary B. Here, in accordance with dimensional analysis, the only length 
associated with the operator P is A=h/V|T|. Accordingly, we have an 
estimate of the form (2) with 

(5) L = Àd(x)/(À + d(x))~Min(À,d(x)). 

For h—»0, one would expect equation (4) to yield asymptotically the mem­
brane equation Au=0. Usually, this transition from plate to membrane is 
discussed in the framework of the theory of singular perturbation of 
operators, representing u as solution of a well-posed problem u = Thf in 
terms of data ƒ, and discussing the limit h—»0 in appropriate function 

2 The estimate (2) is not supposed to hold uniformly in k for all k, but only for k bounded by 
some fixed number K, the coefficients of P having sufficiently many continuous derivatives. In 
the semilinear case, moreover, U is assumed to be sufficiently small. The lengths A and JUL 
depend on bounds for the coefficients of P and their derivatives, and on the modulus of 
ellipticity in D. Estimates of type (2) follow, for example, from the explicit integral representa­
tion for u(k) in terms of u given in [15], [16]. 

3 For the Laplace operator, which contains no representative length, L reduces to d. 
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spaces.4 It is simpler just to apply estimates of type (1) provided we are 
willing to completely ignore the boundary conditions as well as the boundary 
behavior, and instead postulate knowledge of only an upper bound for the 
supremum U of \u\ in the whole domain D. The general approach here is 
motivated by the expectation that interior asymptotic behavior should be 
quite independent of the specific boundary conditions imposed. While, in 
principle, the required upper bound for U could be derived from a suffi­
ciently detailed knowledge of the boundary conditions, this may be irrelev­
ant for many purposes, where U just enters as a convenient and easily 
controlled norm for u, against which the deviation from asymptotic behavior 
for u can be measured. It turns out now that the estimate (2) with the choice 
L=Min(A, d(x)) is insufficient to yield the transition from plate to mem­
brane for h—»0. As a matter of fact, for T < 0 the growth of the fourth 
derivatives in equation (4) cannot be controlled, and thin plates under 
compression cannot be expected to behave like membranes. It is only for 
T > 0 that the approximate validity of the asymptotic equation P'u = Au = 0 
can be justified on the basis of refined derivative estimates,5 which show that 
here (2) still holds with the stronger choice 

(6) L = Min(Aed/2\ ded/2K), A = ÏI/N/T. 

For purposes of illustration, take the case where D is a circular disk of 
radius r»A, and D ' the concentric disk of radius r/2. For xeD', we have 
d(x)^r/2»A, and thus by (6) L(x)^ire r / 4 \ We conclude from (2) and (4) that 
in D ' 

Au = A2 A2u = 0 ( A 2 L 4 U ) - 0(UA V r / x ) . 

Taking for v the solution of the membrane equation P'v=kv=0 with the 
same values as u on the boundary of D' , we find from the maximum 
principle that 

u - v = 0(r2 A(u - v)) = 0 ( U r 2 A ' V r / x ) = 0(Ue' r / 2 x) . 

We see that in D ' the plate solution u differs from a membrane solution v 
by an amount that is small compared to the supremum U of \u\ in D, 
provided the quantity r/A = T1/2r/h is large. This constitutes a more precise 
description of the interior limiting behavior of u for h-»0. 

In the preceding example, it is the operator P that degenerates. For 
applications in which the domain D degenerates, say becomes very thin, 
formula (3) for the wave length is insufficient for deriving asymptotic 
behavior, since, in a thin region, we are unfortunately everywhere close to 
the boundary B. Here, more refined global estimates can be applied, when 
on a portion B' of the boundary, suitable "complementing" homogeneous 
boundary conditions Aw = 0 are satisfied [26]. We can then ignore the 
location of x relative to B ' , and replace d(x) in formula (3) for L(x) by the 
distance d'Xx) from the remaining boundary portion B"=B-B' (possibly 

4 See [17]-[22]. A very complete analysis, including boundary layer expansions for the 
general nonlinear v.Karman-Föppl plate equations, has been given by P. Fife [23]. 

5 Easily verified using the decomposition u = u4-w, where Au=0, h 2 A w - T w = 0 . For an 
analogous treatment of more general plate equations, see [24], [25]. 
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modifying the constants A, /UL to take into account any representative lengths 
associated with B'). Moreover, at points x of D for which the distance d' 
from B' is small compared to L(x), the condition Au=0 can be expected to 
hold approximately and to lead, when combined with Pu = 0, to a new 
asymptotically valid system P'u = 0.6 

As an elementary example, consider the Cauchy-Riemann equations 
Ux = vy, Uy = -vx in a rectangle D: |x |<a, |y|<h, with the boundary condition 
v=0 imposed on the portion B' : |y| = h, |x |<a of the boundary. We can 
interpret (u, —v) as the velocity field of a flow through a channel of width 2h 
and length 2 a, with liquid entering or leaving at the ends B": |x| = a, |y|<h. 
One can show that for h«a the flow is approximately uniform as long as we 
keep away from the ends. For that purpose, introduce U=supD \u\. By 
reflection, u, v can be continued immediately into the whole strip |x |<a 
without changing the differential equation or the bound U. Since here 
d " = a - | x | is the distance of (x, y) from the boundary of the strip, we 
successively find from the Cauchy estimates (1) and the boundary con­
dition that vy = ux = 0(U/d"), v = 0(Uh/d"), ux = vy = 0(Uh/d"*), uy = -vx = 
0(Uh/d"2). Hence, we find for example, that in the subdomain |x|<a/2, 
\y\<K 

v = 0(Uh/a), u - M(0, 0) = 0(Uh/a\ 

so that for h«a the flow is approximately uniform in the central section of 
the channel.7 Details of the velocity distribution at the ends are filtered out 
in the interior. 

A very similar situation (though much harder to discuss) is presented by 
the classical principle of Saint-Venant (1853) for the equilibrium deforma­
tion of a long elastic cylindrical column subject to forces acting at the ends. 
The condition that no forces act on the lateral portion B' of the boundary 
implies that at each point of B' certain combinations of components of the 
stress tensor vanish. St. Venant's principle requires these same combinations 
to vanish effectively throughout the cylinder except near the ends, leading to 
the observation that all details of the force distribution at the ends, except 
for the resultant and resultant moment, are filtered out in the interior. An 
actual proof of the principle8 was given only some 10 years ago through the 
work of R. A. Toupin [28] and (in two dimensions) J. K. Knowles [29] and 
J. Roseman [30]. Here again, the formulation of the principle involves an a 
priori bound either on the total strain energy or the maximum stress. 
Similarly, the interior asymptotic behavior of a thin elastic shell in equilib­
rium can be derived on the basis of a postulated a priori bound for the 
maximum stress [31]. 

Everything said so far applies to elliptic equations (or also to hypoelliptic 
ones [2], [32]). In the case of hyperbolic equations, or others, describing 

6 It is plausible that L is also a wave length for Au, so that grad Au = 0(L~1 supD |Au|). Since 
AM vanishes on B', one can then expect that Au = 0(d'L~1 supD |Au|)«supD |Au| in points for 
which d'(x)«L(x). 

7 Of course, much stronger estimates hold. 
8 And incidentally a correct formulation. 
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general time dependent processes, there is no possibility of estimating higher 
derivatives in terms of lower ones. Irregularities do not necessarily get 
smoothed out, but, on the contrary, can arise spontaneously. Thus, for 
example, there is no filtering effect as in Saint-Venant's principle that 
applies to elastic waves travelling along a long cylinder. Hence, in justifying 
asymptotic behavior, more a priori bounds may have to be postulated. A 
recent example is the derivation by N. Berger [33] of the classical Boussin-
esq and Korteweg-DeVries equations for shallow water flow. 

In conclusion, I should like to discuss asymptotic behavior of a rather 
different type associated with a degeneracy in a certain overdetermined 
system of partial differential equations, and with the notion of "quasi-
isometric mappings". A deformation or mapping of a domain D in R" can 
be represented by a vector u:D-^Rn. We denote by u'(x) the matrix of its 
first derivatives (the "Fréchet derivative" of u). The relative changes in line 
element (or relative changes in distances between "neighboring" points) 
under the mapping can be described by the strain matrix e defined by the 
quadratic formula 

(7) e=12(ufTu'-I) 

where I is the unit matrix and T denotes transposition. For the simplest 
elastic materials, there are constituent laws connecting e with the stress 
tensor, and leading to equations of equilibrium or of motion [34], [35] in 
terms of u and e. The simpler classical linear theory of elasticity derived 
from these is based on the two assumptions that e is "small" and that u' 
deviates "little" from a constant value throughout D. Physically, the first 
assumption amounts to a restriction to small stresses, while the second, more 
doubtful one, has the character of a global geometric constraint. To what 
extent does the first assumption imply the second one? For e=0, the 
mapping u is rigid, and u' is equal to a constant orthogonal matrix. 
However, experience shows that small strains e are quite compatible with 
large variations in u' (large relative "rotations" of different parts of D). This 
occurs particularly when we deal with thin rods or shells (that is with 
degenerating domains D), and accounts, in fact, for some physical 
phenomena (like "buckling") that are specifically nonlinear. Now, from (7), 
u" can be expressed in terms of u', e', e ("Christoffel relations") in a way 
that shows that small strains e and small strain rates e' imply small u", and 
hence (to a degree depending on the shape of D), nearly constant u'. In the 
case where the deformation u corresponds to an equilibrium state in the 
absence of volume forces, the strain e is a solution of an elliptic system, and 
hence, by (2), small e yield only correspondingly small e', and u' will indeed 
be nearly constant, except possibly near the boundary B of D where (2) 
breaks down. However, in the absence of an elliptic system for e (as in 
elastic body motion), a bound on e supplies no information on e' or u".9 We 

9 For dimensional reasons, a postulated a priori bound for e' would be of a different physical 
character than a postulated bound for the dimensionless e, since a bound for e' would be tied to 
the introduction of a representative length. 
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now have the remarkable fact that bounds on e alone already imply bounds 
on the mean oscillation of u'. 

Mappings u with |e |<e in the domain D are called e-quasi-isometric [36], 
[37], [38]. A typical simple example is furnished by the plane mapping 
described in polar coordinates by 

(8) ( r ,0 ) -» ( r ,0 + e logr ) , 

for which 

(9) u' = (COf]0*rl - s i n / e , l 0 g r ? ) + 0 ( e ) , e = 0 ( e ) . 
Vsin(elogr) cos(e log r) / 

The mapping preserves circles about the origin, rotating them by an amount 
depending on their radius (Figure 1 indicates this mapping for e = 1 with the 
unit disk as domain D, showing the image of the coordinate grid in the XiX2 

plane). This example illustrates several conclusions that can be made for the 
general quasi-isometric mapping with small e in any dimension. First of all, 
we see from (9) that u' is not everywhere close to a constant matrix but 
comes close to every proper orthogonal matrix. Moreover, this high variabil­
ity of u' is not confined to a neighborhood of the boundary of D, but is most 
pronounced right at the center.10 (It is easy to make up other examples of e-
quasi-isometric with large oscillations of u' scattered throughout the domain 
D, though only in a set of small measure.) For small e, the image under u of 
any cube C of side h contained in D is approximately a congruent cube, 
though, in detail, the mapping of C can be far from rigid. (This is shown in 
Figure 2, an enlarged detail of Figure 1, showing the image of a coordinate 
square with vertex at the origin). More precisely, if yc is the average of u' in 
C and (8c a suitable constant vector, the estimate u-ycx~($c = 0(eh) is valid 
throughout C. However, the average yc (represented in Figure 1 by the 
angle by which the original coordinate squares C have turned) varies 
according to the size and location of C, and the shape of the domain D. For 
a domain D that is convex and whose boundary lies between two concentric 
spheres of radii a and b (a<b), one finds that 

(10) 7 c " 7 = 0 ( e (b/2)log(l + a/h)), 

where 7 is the average of u' in D. Moreover, in the points of D, 

(11) u-yx-p = 0(eb2/a) 

for a suitable constant 0. Formula (11) shows that the kinematic rigidity of 
the convex domain D under deformations with small strain, is higher for 
balls (a = b) than for elongated solids (a«b). 

The preceding discussion involved the average 7c of the derivative of an 
e -isometric mapping. We can show more precisely that the mean oscillation 

10 This shows incidentally that the "twisting" deformation (8) cannot represent an equilibrium 
position for an elastic body unless it is one maintained by a suitable external "volume force". 
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(r,0)-Mr,0+logr) 

FIGURE 1 

of u' (see [39]) is of order e, that is that 
( 1 2 ) h-n[\u'-yc\dx = 0(e) 

for each cube C in D. This can be shown to imply that, more generally, for 
any p with l^p«» , 

(13) (h-njc |u'-7c|pdx)1 /P = 0(pe). 

Thus, in every cube C, the function u' differs in the Lp-sense from a constant 
by an amount of order e as long as p is finite. 

FIGURE 2 
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The curious family of functions of bounded mean oscillations, introduced 
in [39], has been applied and studied extensively (see [40]-[46], and the 
references given there). More recently, it has been linked to another class of 
mappings u characterized by an a priori inequality for iï: H. M. Reimann 
[47] proves that the logarithm of the Jacobian determinant of a quasi-
conformai mapping is of bounded mean oscillation. 

There are still other types of questions that take on a new meaning when 
we impose an a priori bound on the unknown u (assuming that one has a 
priori reasons for the belief that there might exist a solution u with such a 
bound). This situation arises in connection with some improperly posed 
problems (for example, Cauchy problems for analytic nonhyperbolic equa­
tions, or problems involving analytic continuation) where u is uniquely 
determined in terms of data ƒ, but where the operator T generating u from ƒ 
is not continuous [48], [5]. Here, imposition of a bound |u|^=U may 
regularize the problem. The restriction of T to the subfamily described by 
the inequality can be continuous, and this may even make it possible to 
determine u from ƒ by a suitable stable numerical scheme. 
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