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We obtain results concerning the behaviour of the function 2W t t (a G On) 
under the assumption of the existence of certain kind of ideals. These results 
complement those of Ulam [7], Tarski [6] and Solovay [4] and [5]. In partic­
ular, it follows that if 2W is real-valued measurable, then 2V = 2^ for all infinite 
v<2". 

We assume some familiarity with [4] and [5]. a, j3, 7, 6,77, £, p (K, X, v, r) 
denote ordinals (inf. cardinals), f g, h denote functions; F denotes families of 
functions or sets. We use the Erdös-Hajnal notation [S]v, [S]<v, etc. (see [2]). 
F is X-almost disjoint (X-a.d.) if \X n Y\< X whenever X, Y G F and X =É Y. 

DEFINITION 1. fc is X-real-supercompact (abbrev. X-r.s.c.) if there is a 
real-valued K-compl. measure /x defined on P([X]<K) such that 

(i)M([X]<K) = l; 

(ii) for every a E X, fx({x: a ^ x}) — 0; 
(iii) if JI(X) > 0 and ƒ: X —> X is such that f(x) G x for all x G X, then 

there is Y C X such that fi(Y) > 0 and ƒ is constant on Y. 

K is r.s.c. if K is X-r.s.c. for all regular X > K. We define "K is coj-saturatedly 
supercompact" (abbrev. coj-s.s.c.) by replacing // by an ideal I in the obvious way. 

One can show by the methods of [3] and [4] that if it is consistent that 

a s.c. cardinal exists, then it is consistent that 2W is r.s.c. 

DEFINITION 2. R2{KO> KJ) holds if for every partition [KX]2 = 

\J{K^: £ G X}, where co < X < K 0 , there exists an X C KX and M C X such 

that \X\ = K0, M < X, and [X]2 C ( J { ^ : £ e ^ > -

THEOREM 1. Let \9v < K, u> < cf(X) tftóFC [p]>x be \-a.d. If 
R2(K, K) fa>Ws flfld cf(fc) > co, ^e« |F| < K. If R2(K, KX) holds and KX is regular, 
then \F\ <KX. 

THEOREM 2. Set 2^ = K and suppose that K carries a K-compl oùx-sat. 
nontrivial ideal Then 

(a) for all v <K92
V = K; 

(b) if I C ?{K) is œ^compl, u^sat. and [K]<K C ƒ, then \?(K)/I\ = 2K\ 
(c) ifv<K and cf(i>) > co, tfzew /^ere zs a family F Cvv such that \F\ < K 

and each gGvv is dominated everywhere by some f E F; 

AMS (MOS) subject classifications (1970). Primary 02K35. 
Research supported by NSF grant GP-43841 and by a Fellowship from the Institute 

for Advanced Study. 
Copyright © 1975, American Mathematical Society 

907 

file:///-a.d


908 KAREL PRIKRY [ September 

(d) if\v<K,u< cf(X) and F C [v]>x is X-a.d, then \F\ < K. 

THEOREM 3. Suppose that 2W = K is ojj-s.s.c. Then 

(a) XK = X for all regular X > K\ 
(b) 2V = v* for all singular strong limit v > K\ 
(c) if I C P(K) is co^compl, oo^sat., [K] <K C ƒ a tó P (K) / / caw ^ ££>?-

erated (by infinitary Boolean operations) from X elements, then either 2K = X, 
or 2" = X+ and cf(X) = co; 

(d) if\>K, then ax is /a/s^ (see [5] /or the statement of °x) . 

Solovay [4, Lemma 14, p. 406] proved that R2(K, K) holds if K carries a 
fc-compl. co^sat. nontrivial ideal. The proof of Theorem 2(a) uses this result, 
Theorem 1, and Tarski's "almost disjoint sets" construction. It proceeds by 
induction on v < 2 W . 

Theorem 2(b) strengthens a result of Kunen who showed that \V(K)/I\ > 

K+ . To prove this, he used the fact that in the Boolean-valued universe VP^K^T, 

|P(w)| > fc+. Theorem 2(a) enables us to show that in VP(K)/I, |P(CO)| = 2K. 
To prove Theorem 2(c), we again use a method of Kunen who showed that 

the corresponding result holds for wco if 2W is r.v.m. This is made possible by 
Theorem 2(a). The method involves considering Solovay's Boolean ultrapower 
V/I. 

The proof of Theorem 3 involves ideas of [5, §§3 and 4] and an additional 
unpublished result of Solqvay. 

LEMMA 1 (SOLOVAY, UNPUBLISHED). For every regular X > co there 

exists an u-ary Jónsson algebra (X, ƒ> such that for every X C X, |rng(/\ [X] u , ) | 
<\Xl 

LEMMA 2. Let \> K be regular and \xbe a measure as in Definition 1. 
(a) If X C [X]<K and n(X) = 1, then \X\ = X*. 
(b) Let g: [\]<K —+\be defined by g(x) = sup(jc). Then there is X C 

[X]<K such that n(X) = 1 and g\X is one-to-one. 

The proof of Lemma 2(a) uses Theorem 2(a). Lemma 2(b) is analogous to 
Theorem 2 of [5]. The proof of Lemma 2(b) uses Lemma 1 where Solovay's 
proof of his Theorem 2 used an older result of [1]. Some modifications are 
required and this holds for the proof of Theorem 3(d) as well. Theorem 3(a) 
follows from Lemma 2 and implies Theorem 3(b). Theorem 3(c) follows from 
Theorem 2(b) and Theorem 3(a). 

The author wishes to thank K. Kunen for valuable discussions concerning 

the subject of this note. 
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