IDEALS AND POWERS OF CARDINALS

BY KAREL PRIKRY¹

Communicated by Alistair Lachlan, April 28, 1975

We obtain results concerning the behaviour of the function $2^{\omega_{\alpha}}$ ($\alpha \in On$) under the assumption of the existence of certain kind of ideals. These results complement those of Ulam [7], Tarski [6] and Solovay [4] and [5]. In particular, it follows that if 2^{ω} is real-valued measurable, then $2^{\nu} = 2^{\omega}$ for all infinite $\nu < 2^{\omega}$.

We assume some familiarity with [4] and [5]. $\alpha, \beta, \gamma, \delta, \eta, \xi, \rho$ $(\kappa, \lambda, \nu, \tau)$ denote ordinals (inf. cardinals). f, g, h denote functions; F denotes families of functions or sets. We use the Erdös-Hajnal notation $[S]^{\nu}$, $[S]^{<\nu}$, etc. (see [2]). F is λ -almost disjoint (λ -a.d.) if $|X \cap Y| < \lambda$ whenever $X, Y \in F$ and $X \neq Y$.

DEFINITION 1. κ is λ -real-supercompact (abbrev. λ -r.s.c.) if there is a real-valued κ -compl. measure μ defined on $\mathcal{P}([\lambda]^{<\kappa})$ such that

- (i) $\mu(\lceil \lambda \rceil^{<\kappa}) = 1$;
- (ii) for every $\alpha \in \lambda$, $\mu(\{x : \alpha \notin x\}) = 0$;
- (iii) if $\mu(X) > 0$ and $f: X \to \lambda$ is such that $f(x) \in x$ for all $x \in X$, then there is $Y \subset X$ such that $\mu(Y) > 0$ and f is constant on Y.

 κ is r.s.c. if κ is λ -r.s.c. for all regular $\lambda \geqslant \kappa$. We define " κ is ω_1 -saturatedly supercompact" (abbrev. ω_1 -s.s.c.) by replacing μ by an ideal I in the obvious way.

One can show by the methods of [3] and [4] that if it is consistent that a s.c. cardinal exists, then it is consistent that 2^{ω} is r.s.c.

DEFINITION 2. $R_2(\kappa_0, \kappa_1)$ holds if for every partition $[\kappa_1]^2 = \bigcup \{K_{\xi} \colon \xi \in \lambda\}$, where $\omega < \lambda < \kappa_0$, there exists an $X \subseteq \kappa_1$ and $M \subseteq \lambda$ such that $|X| = \kappa_0$, $|M| < \lambda$, and $[X]^2 \subseteq \bigcup \{K_{\xi} \colon \xi \in M\}$.

THEOREM 1. Let $\lambda, \nu < \kappa, \omega < cf(\lambda)$ and $F \subseteq [\nu]^{>\lambda}$ be λ -a.d. If $R_2(\kappa, \kappa)$ holds and $cf(\kappa) > \omega$, then $|F| < \kappa$. If $R_2(\kappa, \kappa_1)$ holds and κ_1 is regular, then $|F| < \kappa_1$.

Theorem 2. Set $2^{\omega}=\kappa$ and suppose that κ carries a κ -compl. ω_1 -sat. nontrivial ideal. Then

- (a) for all $\nu < \kappa$, $2^{\nu} = \kappa$;
- (b) if $I \subseteq P(\kappa)$ is ω_1 -compl., ω_1 -sat. and $[\kappa]^{<\kappa} \subseteq I$, then $|P(\kappa)/I| = 2^{\kappa}$;
- (c) if $v < \kappa$ and $cf(v) > \omega$, then there is a family $F \subseteq {}^{v}v$ such that $|F| < \kappa$ and each $g \in {}^{v}v$ is dominated everywhere by some $f \in F$;

AMS (MOS) subject classifications (1970). Primary 02K35.

¹Research supported by NSF grant GP-43841 and by a Fellowship from the Institute for Advanced Study.

(d) if λ , $\nu < \kappa$, $\omega < cf(\lambda)$ and $F \subseteq [\nu]^{\geqslant \lambda}$ is λ -a.d., then $|F| < \kappa$.

Theorem 3. Suppose that $2^{\omega} = \kappa$ is ω_1 -s.s.c. Then

- (a) $\lambda^{\kappa} = \lambda$ for all regular $\lambda > \kappa$;
- (b) $2^{\nu} = \nu^{+}$ for all singular strong limit $\nu > \kappa$;
- (c) if $I \subseteq P(\kappa)$ is ω_1 -compl., ω_1 -sat., $[\kappa]^{<\kappa} \subseteq I$ and $P(\kappa)/I$ can be generated (by infinitary Boolean operations) from λ elements, then either $2^{\kappa} = \lambda$, or $2^{\kappa} = \lambda^+$ and $cf(\lambda) = \omega$;
 - (d) if $\lambda \ge \kappa$, then \square_{λ} is false (see [5] for the statement of \square_{λ}).

Solovay [4, Lemma 14, p. 406] proved that $R_2(\kappa, \kappa)$ holds if κ carries a κ -compl. ω_1 -sat. nontrivial ideal. The proof of Theorem 2(a) uses this result, Theorem 1, and Tarski's "almost disjoint sets" construction. It proceeds by induction on $\nu < 2^{\omega}$.

Theorem 2(b) strengthens a result of Kunen who showed that $|P(\kappa)/I| \ge \kappa^+$. To prove this, he used the fact that in the Boolean-valued universe $V^{P(\kappa)/I}$, $|P(\omega)| \ge \kappa^+$. Theorem 2(a) enables us to show that in $V^{P(\kappa)/I}$, $|P(\omega)| = 2^{\kappa}$.

To prove Theorem 2(c), we again use a method of Kunen who showed that the corresponding result holds for ω if 2^{ω} is r.v.m. This is made possible by Theorem 2(a). The method involves considering Solovay's Boolean ultrapower V^{κ}/I .

The proof of Theorem 3 involves ideas of [5, §§3 and 4] and an additional unpublished result of Solovay.

LEMMA 1 (SOLOVAY, UNPUBLISHED). For every regular $\lambda > \omega$ there exists an ω -ary Jónsson algebra $\langle \lambda, f \rangle$ such that for every $X \subseteq \lambda$, $|\operatorname{rng}(f \upharpoonright [X]^{\omega})| \leq |X|$.

LEMMA 2. Let $\lambda \ge \kappa$ be regular and μ be a measure as in Definition 1.

- (a) If $X \subseteq [\lambda]^{<\kappa}$ and $\mu(X) = 1$, then $|X| = \lambda^{\kappa}$.
- (b) Let $g: [\lambda]^{<\kappa} \to \lambda$ be defined by $g(x) = \sup(x)$. Then there is $X \subseteq [\lambda]^{<\kappa}$ such that $\mu(X) = 1$ and $g^{\dagger}X$ is one-to-one.

The proof of Lemma 2(a) uses Theorem 2(a). Lemma 2(b) is analogous to Theorem 2 of [5]. The proof of Lemma 2(b) uses Lemma 1 where Solovay's proof of his Theorem 2 used an older result of [1]. Some modifications are required and this holds for the proof of Theorem 3(d) as well. Theorem 3(a) follows from Lemma 2 and implies Theorem 3(b). Theorem 3(c) follows from Theorem 2(b) and Theorem 3(a).

The author wishes to thank K. Kunen for valuable discussions concerning the subject of this note.

REFERENCES

1. P. Erdös and A. Hajnal, On a problem of B. Jónsson, Bull. Acad. Polon. Sci. Sér. Sci. Math. Astronom. Phys. 14 (1966), 19-23. MR 35 #64.

- 2. P. Erdös and A. Hajnal, Unsolved problems in set theory, Proc. Sympos. Pure Math., vol. 13, part 1, Amer. Math. Soc., Providence, R. I., 1971, pp. 17-48. MR 43 #6101.
- 3. K. McAloon, Consistency results about ordinal definability, Ann. Math. Logic 2 (1970/71), no. 4, 449-467. MR 45 #1753.
- 4. R. Solovay, Real-valued measurable cardinals, Proc. Sympos. Pure Math., vol. 13, part 1, Amer. Math. Soc., Providence, R. I., 1971, pp. 397-428. MR 45 #55.
- 5. ——, Strongly compact cardinals and the GCH, Proc. Sympos. Pure Math., vol. 25, Amer. Math. Soc., Providence, R. I., 1974, pp. 365-372.
- 6. A. Tarski, Ideale in vollständigen Mengenkörpern. II, Fund. Math. 33 (1945), 51-65. MR 8, 193.
- 7. S. Ulam, Zur Masstheorie in der algemeinen Mengenlehre, Fund. Math. 16 (1930), 140-150.

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF MINNESOTA, MINNEAPOLIS, MINNESOTA 55455