
BULLETIN OF THE 
AMERICAN MATHEMATICAL SOCIETY 
Volume 81, Number 3, May 1975 

AN ATTACK ON RIGIDITY. I, II 

BY ROBERT CONNELLY1 

Communicated by Harry Kesten, December 31, 1974 

1. Introduction. We are primarily interested in the continuous rigidity 
(as opposed to the infinitesimal rigidity) of polyhedral surfaces in three-space. 
In 1813 Cauchy proved (with a few patchable mistakes) that any two convex 
polyhedral surfaces that are isometric are congruent, and even today his result 
has been improved only infinitesimally. If one looks at strictly convex embed-
dings this implies that they are rigid (see Gluck [5] for definitions). However, 
since Cauchy, most efforts have been devoted to either infinitesimal rigidity 
(see Dehn [4] for instance) or uniqueness of embeddings in a class closely 
resembling convex embeddings (cf. Stoker [9] , Alexandrov [1] , or Pogorelov 
[8]) even in the smooth category, where more "modern" methods have sup
planted Cauchy's (see Nirenberg [7] , Chern [3] , or Herglotz [6] for instance). 
These techniques seem not too promising for the old conjecture that all embedded 
(or immersed) polyhedral (or smooth) surfaces are continuously rigid. 

We present some ideas and techniques which we hope will be useful for 
the more general rigidity problem. Among other things, we show that any 
embedded suspension of a polygonal circle is rigid, as well as Theorems 1 and 
2 below. 

2. The structural equations. We regard a polyhedron P as a finite collec
tion of points pl9p2,

9 * ' in R3, together with certain unordered pairs of the 
points, which we call edges. If P corresponds to a triangulated 2-dimensional 
surface, then the subpolyhedron of points adjacent to a point p corresponds to 
a circle. Let pl9p2, • * * »Pn denote those points as one proceeds cyclicly 
around the "link" of p . Let e^ = Pjr~p9 ƒ = 1, • • • , n, be thought of as a 
vector. Choose some convenient reference vector, R9 and let rr: R3 —• Rl 

denote orthogonal projection onto the plane perpendicular to R. Let 0^.+ 1 

denote the angle from 7r(e;.) to ir(eJ+ x). The idea is to write 0^+ 1 , or more 
conveniently e ',+1, as some reasonable function of z;. = R • e.9 z,+ x = R • €• + v 
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and x = R*R. We assume that no 7r(e;) = 0. Then it is not hard to show 
that 

^ + 1 = ( Ô / / + 1 + 7 / / + 1 ) / ^ / / / / + i , 

where 

4 + 1 = - * d e t [*/+i * ej ej+i # */+i */+i| 

z /+1 * 

[ , , ] is the triple scalar product. Thus since 2" = 1 0y/+1 = 27rco, where co is 
the winding number of the link about the line through R, we have 

W I - ft ."»•. - ft Q,,^H
yiM-

Cross multiplying we have the "structural" equations, 

n HI2 = fi ©#+i+ w = n «w - w -
Note that x9 zl9 • • • , zn are the only extrinsic variables in this equation. 
ej- • e;., ey • eJ+1 depend only on the intrinsic nature of P. 

3. Suspensions. We specialize to the following polyhedron, which we 
call a suspension, 2 . There are two points N9 S9 the north and south poles, 
with a common link px, • • • , pn. Call the edges ej = Pj - N9 ej = S - pj9 

e / / + 1 = pf - P / + i = ef - ef+l9j = 1, 2, • • • , n. The edges from/?,- to pf+1 

are called the equator. 
Now we define R = S -N. It is easy to show 

R* ej = Zj = VL(X + e;. • «y - ej • e'f). 

Thus the structural equation (*) becomes (up to the sign of y..+ 1) a function 
of x = R-R. 

If 2 flexes (i.e. it is nonrigid) and x is constant during the flex, it is easy 
to see that 2 is not an immersion at either N or 5. So we assume that x varies 
during a flex, so that all the quantities in (*) become analytic functions of x 
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and are in fact defined for all complex x over an appropriate Riemann surface 

say. Since all the quantities agree on the same small interval for real x, they 

agree everywhere. In particular they agree at °°. We state one consequence of 

this technique. 

THEOREM 1. Let 2 flex with variable x. Then the winding number co 

of the equator about the line through N, S (which is defined for all x in the 

interior of a flexing interval) is zero. 

For any oriented polyhedral surface P, define a number 

V(P) = 'L[pi,Pk,Pl]l6, 

where (p., pk, pj) is an oriented triangle of P, and the summation is taken over 
all such triangles. If P is an embedded surface, or is immersed bounding an 
immersed 3-manifold, then V(P) is the volume of the bounded 3-manifold, if 
the proper orientation is chosen. Using techniques similar to those described 
above we show: 

THEOREM 2. Let X,a suspension, flex with variable x. Then VÇL) = 0. 

COROLLARY. If a suspension S is embedded, or is immersed bounding 

an immersed 3-manifold, then 2 is rigid. 

4. Generalizations. It is possible to generalize Theorem 1 to the case 
when S is a suspension of a piecewise C1 curve (rather than piecewise-linear) 
by using somewhat different techniques. The structural equation used differs 
from (*) by a log, and an integral instead of a product is involved. However, 
the same principle of analytic continuation is still used. 

It is also possible to use (*) to give a fairly complete description of all 
flexible octahedra (and to some extent all suspensions as well). This involves 
the well-known group action on the nonsingular cubic y2 = x(x - b')(x - b), 

b, b real, and a flow graph used to describe (*). 

ADDED IN PROOF. We have recently found an example of an immersed 
polyhedral surface which flexes, contradicting one of the conjectures mentioned 
above. The conjecture, that all immersed polyhedral surfaces that bound an 
immersed 3-manifold are rigid, has not been contradicted and seems more 
appropriate. 

We are also grateful to Branko Grünbaum for informing us of the work 
of Bricard [10], (and related references [11], [12], [13]), who gave a descrip
tion of the flexible octahedra in 1897! 
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