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Let ƒ be a compact interval in the real line. We denote by //*'p = 
//*'p(/) (1 <p < °°, k = 1, 2, . . . ) the space of real-valued functions which 
are fc-fold integrals of functions in Lp = LP(T). Let {^}, i = 1, . . . , « + k, 
be chosen in I such that tx < • • • < tn+k and ti+k - tt > 0 for i = 1, . . . , 
n. For the given data T = {yi9Pf}9 let 

Gp « {ƒ € J5f*-P: [f„ . . . , *,+ * ]ƒ= 7/, ft, • • • , * , ]ƒ- 0,, 

K i < n , 1 < ; < * } , 
where [JCX, . . . , x r + 1] denotes the rth divided difference operator at xl9 

. . . , xr+ x. (This is just another way of writing point evaluations of a func
tion and its derivatives.) For 1 < p < °°, let s be the unique element in Gp 

which best approximates the zero element in the seminorm IIZ>*(-)llp = 
IIZ)*(-)llzpm. The sp's are called the i/*'p-splines (which interpolate the given 
data T). Several authors have studied the //*,p-splines. See for example 
Golomb [5], Jerome and Schumaker [6], and Smith [8]. Mangasarian and 
Schumaker [7] suggested that an H*'00-spline could be obtained as a limit of 
the //**p -splines by taking p —• °°. Results in this direction were obtained in 
[1] and [9]. We now have the following convergence result. 

THEOREM 1. The net {sp}p>1 converges, flsp->», in Hkfl to s^ 
which is in G^ and satisfies 

IIZ^sJL = inf IIZ)*wlL. 

Furthermore, s^ is a Ck~1(I) (piecewise polynomial) spline or order k 4- 1 
with no more than n knots. 

In fact, we can show that s^ is the Favard solution [2], [3], and this 
theorem settles a conjecture of de Boor [2]. 
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Since the situation when we take p —• °° is so nice, we might expect 
the convergence of {sp}p>1 as p —• 1. However, one immediate problem is 
that Gj is not in general proximinal in Hk'1 under the seminorm \\Dk(-)\\l9 

and hence there may be no element of minimal seminorm in Gx. In order to 
rectify this situation, we set the problem in (NBV)*(/), which is the space of 
functions ƒ whose kth derivatives are regular Borel measures fy on / with the 
total variation seminorm 

" ^ " V I I N B V = lM/IC0- Clearly, (NBV)*(/) is a dual 
space and Hkfl can be embedded isometrically into (NBV)fc(/). We set 

Gx = {ge (NBV)*(7): ft, . . . , ti+k]g = yi9 ft, . . . , t,\g = Pf9 

.1 <i<n,l < ƒ < £ } . 

Here we make the simplifying assumption that ti+k__1 > ti9 since a function 
in (NBV)*(/) may not have (k - l)th derivatives at the knots. Fisher and 
Jerome [4] and de Boor [2] have studied the problem of minimizing the 
(k - l)th derivative in NBV. We have the following result. 

THEOREM 2. Every sequence pn —• 1 has a subsequence pn such that 
sp'n —• s in the weak* topology of (NBV)#*(/), where sGG1 satisfying 
\\Dk-1s\\^BV < \\Dk~ VUNBV for all g e GV and 

U ^ - ^ I I N B V = intiMPfl^fe Gx}. 

In [2] and [4], it was pointed out that there are solutions to the mini
mum NBV seminorm problem that are Mold integrals of linear combinations 
of 8 -functions. However, we can construct examples to show that the weak* 
limits of {Sp}p>i are not necessarily piecewise polynomials. Yet we have the 
following result. 

THEOREM 3. Let s EGt be a weak* cluster point of {sp}p>1. as p —+ 
1. Then 

Dks(t) = £ cfi(f - r,) + (£±X[t ,th j(0J exp(L(0) 
/=1 V=l ai °i ) 

where L{t) = 2?= 1 dtNik(t) is a linear combination of B-splines supported on 
ft» fn + k]> Xfl(0 denotes the characteristic function of the set B, and av bt 

are integers satisfying 1< at < bx < a2 < b2 < - • - < bm < n + k. Further
more, 
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m 
r + (fc-l)m + £ (bi-ai)<n. 

i=l 

The proofs of the above theorems and more related results will appear 
elsewhere. 
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