BULLETIN OF THE
AMERICAN MATHEMATICAL SOCIETY
Volume 81, Number 3, May 1975
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Let J be a compact interval in the real line. We denote by H*? =
H*P() 1 <p<o,k=1,2,...) the space of realvalued functions which
are k-fold integrals of functions in LP = LP(I). Let {#;},i=1,...,n +k,
be chosen in I such that ¢, <---<¢,, and ¢, , —¢,>0fori=1,...,
n. For the given data I' = {y,, B]-}, let

= {fEHP: [ty ..., tyy)f =7 [ty ..., 41f =8,

1<i<n, 1<j<k},

where [x,, ..., X,,,] denotes the rth divided difference operator at x,,

«sX,. 4. (This is just another way of writing point evaluations of a func-
tion and its derivatives.) For 1 <p < o, let Sp be the unique element in Gp
which best approximates the zero element in the seminorm I D¥(: ), =
ID*Hl Loay The s,’s are called the H*P_splines (which mterpolate the given
data I"). Several authors have studied the H*'P-splines. See for example
Golomb [5], Jerome and Schumaker [6], and Smith [8]. Mangasarian and
Schumaker [7] suggested that an H***spline could be obtained as a limit of
the H*'Psplines by taking p — . Results in this direction were obtained in
[1] and [9]. We now have the following convergence result.

THEOREM 1. The net {s,},> , converges, as p — «, in H*! 10 5.,
which is in G, and satisfies

ID¥s I = inf ID*wl.
weG

Furthermore, s, is a C*~1(I) (piecewise polynomial) spline or order k + 1
with no more than n knots.

In fact, we can show that s, is the Favard solution [2], [3], and this
theorem settles a conjecture of de Boor [2].
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Since the situation when we take p — oo is so nice, we might expect
the convergence of {sp} p>1 30— L However, one immediate problem is
that G, is not in general proximinal in H**! under the seminorm ID*()Il,,
and hence there may be no element of minimal seminorm in G,. In order to
rectify this situation, we set the problem in (NBV)*(Z), which is the space of
functions f whose kth derivatives are regular Borel measures s on I with the
total variation seminorm I1D¥~!fllgpy = lufl@). Clearly, (NBV)*(7) is a dual
space and H*'! can be embedded isometrically into (NBV)¥ (7). We set

61 = {g€ (NBV)k(I): [ti, R t1+k]g =Y [tla R t,']g= B;,
A<i<n, 1<j<k}.

Here we make the simplifying assumption that ¢, _, _, > t,, since a function
in (NBV)¥ (/) may not have (k — 1)th derivatives at the knots. Fisher and
Jerome [4] and de Boor [2] have studied the problem of minimizing the

(k — 1)th derivative in NBV. We have the following result.

THEOREM 2. Every sequence p, — 1 has a subsequence p:, such that
Sp,, —> § in the weak* topology of (NBV)X(D), where s € 51 satisfying
ID*~ sl py < ID*~glypy forall g € G, and

ID*~1slly gy = inf {ID¥fl,: f€ G,}.

In [2] and [4], it was pointed out that there are solutions to the mini-
mum NBV seminorm problem that are k-fold integrals of linear combinations
of §-functions. However, we can construct examples to show that the weak*
limits of {sp}p>l are not necessarily piecewise polynomials. Yet we have the
following result.

THEOREM 3. Let s € 51 be a weak* cluster point of {s,},~ asp —
1. Then

r m
D¥s(t) = 1221 cdit—1)+ <21 £ X1, ;) (t)> exp(L(1))
= vi= 1
where L(t) = Zi_ | d;N; 4(2) is a linear combination of B-splines supported on
[ty t, +1])s Xg(t) denotes the characteristic function of the set B, and a;, b;
are integers satisfying 1 <a, <b, <a, <b, <---<b, <n+k Further
more,
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m
r+k-Dm+ Y (b;—a)<n.
i=1

The proofs of the above theorems and more related results will appear
elsewhere.
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