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Values of non-atomic games, by R. J. Aumann and L. S. Shapley, Princeton 
University Press, Princeton, New Jersey, 1974, xi+333 pp., $14.50 

Nonatomic games are games played not by a set of individuals but by 
a measurable space whose measurable sets are called coalitions. They 
are intended as models for economic problems in large populations. 
Evidently a case could be made—though neither the book nor this review 
proposes to—that nonatomic games are more fundamental for economic 
theory than «-player games. No doubt, actual populations are finite; 
but that is true also of the atoms in a continuous medium. 

This is the first book on nonatomic games, and all of the literature in 
the area is within the conceptual framework that Aumann and Shapley 
have established. In particular, it is all on values. As the authors say, 
"an operator that assigns to each player of a game a number that purports 
to represent what he would be willing to pay to participate • • • is called 
a value. Value theory for finite games—i.e., «-player games with n finite— 
was first studied by Shapley [12], and is by now a well established branch 
of game theory. It is the purpose of this book to develop a corresponding 
theory for nonatomic games." 

The fact is, thirty years after the first book on «-player game theory 
[10], that none of its major concepts except that of value seems fit to 
extend to infinity. The Shapley value is wholly noncontroversial—that 
is, if we understand it in a suitably narrow sense. Aumann and Shapley 
do stay within that sense in this book. It is as follows. The process of 
finding a value for a game is commonly split into two stages: finding a 
characteristic function v, and passing on to a value cpv. When Shapley 
introduced the operator v\-*cpv [12], the von Neumann-Morgenstern 
definition of characteristic function [10] was the only one available. As 
the literature on values grew, Shapley published a footnote [14] saying 
that Harsanyi's characteristic function ([3] or [4]) "is to be preferred" in 
valuation theory. Not all agree [8]. But every two-stage evaluation of 
this type follows Shapley from v to <pv, and the principal one-stage evalu­
ation [11] agrees in its conclusion with Harsanyi and Shapley—it is 
intended only to deepen the theoretical basis. 

In this book, the game is given as a characteristic function, almost always 
a real-valued function of bounded variation on the Borel sets of an interval 
(or an isomorphic measurable space /). Evaluating such a function is the 
same sort of problem as integrating a suitable function, or for a closer 
parallel, associating a measure to an outer measure. The initial source of 
ideas is different, and of course one may profitably revisit the source, but 
the source does not surround the theory 

As for the major concepts of game theory untouched in this book, 
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of course lack of unanimity and other difficulties do not forbid generali­
zation. Since one tends to look to game theory for statements about how 
a game may come out as well as about how much the seats should sell for, 
it seems worth noticing some difficult features of, say, von Neumann-
Morgenstern solution theory. A solution is a set of outcomes; compact, 
but not otherwise restricted in general [13]. A finite game usually has 
infinitely many solutions, but sometimes none [9]. It is a familiar com­
plaint of interpreters of game theory experiments that one cannot tell 
whether the results confirm or disconfirm solution theory. What it means 
for the players of a game to adopt a solution was explained by von Neu­
mann and Morgenstern [10]; it is rather like adopting a creed, such as 
single-taxism. Then of course there are the alternative "outcome" theories. 

There are four commonly recognized bases, or justifications, for the 
(Harsanyi-) Shapley value in finite games, (a) It is the only linear operator 
from games to measures which is invariant under all permutations of 
players and satisfies two further simple axioms, (b) It is the expected 
result of totally ordering the players at random and crediting each player 
with the increment of strength he brings to the coalition consisting of his 
predecessors, (c) Harsanyi's analysis [3], [4] is not expressed as a construc­
tion of v and passage (with Shapley) on to <pv, but as a construction of a 
certain bargaining model which is then treated by Zeuthen-Nash theory, 
(d) Finally, there is Selten's derivation [11] going from the rules of the 
game to cpv by means of nine axioms. 

The first half of this book develops three approaches to evaluating 
nonatomic games, based on analyses (a) and (b) and on approximation by 
finite games. (Basing an approach on (c) or (d) would be a far more 
complex task, and the spirit would have to be more combative since (c) 
and (d) for finite games are not undisputed.) The results are three value 
operators defined on certain Banach spaces of games on a standard Borel 
space; they agree on intersections in at least two of the three cases. All 
cover the Banach space pNA of set functions spanned by C1 functions of 
finite numbers of countably additive, purely nonatomic, totally finite 
measures. (The C1 function/must vanish at the origin; thenf(/Al9 • • • , /O 
has finite total variation, which gives the norm used.) 

An example of a game in pNA is sin X where A is Lebesgue measure 
(on [0, 1], the usual model of the standard space). The play of this game 
is a bit curious. If ten small coalitions of measure 0.1 form, each "com­
mands" sin 0.1 «^0.10. They cannot all get it, since the total coalition I 
is worth only tf(/)=sin 1^0.84. But this theory does not concern play. 
The value of sin A is (sin 1)A. 

Nearly a third of the book concerns a type of Walrasian economy. 
Very roughly, the central theme of a sizable literature is that several 
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analyses, which in general give different and separately nonunique 
results, tend to the same single point in suitable large economies. That is 
the main theme of W. Hildenbrand's new book [5], which does not have 
Aumann-Shapley values in it. Aumann and Shapley are here concerned 
with maximal theorems asserting that the core is a single point equal to the 
(or: to a) value. They give a much sketchier treatment of Walras equilibria. 
This does give the mathematical reader the connection, and one could 
pursue the topic in [5]. 

The axiomatic analysis (a) occupies Chapter I. A reader prepared by 
a sound introductory real-variable course should have no real difficulty 
except the one Aumann and Shapley create by omitting a nine-page 
appendix from the preliminary edition of the book (published as a technical 
report by both authors' home institutions [2]). They invite the reader to 
reproduce it, to establish Lemma 8.5. 

A value is defined as a linear map <p whose domain is a linear subspace 
of the space of functions of bounded variation, invariant under all auto­
morphisms of the measurable space /, whose codomain is the space of 
bounded finitely additive measures, and which i s invariant, positive on mono­
tone functions, and efficient: (q>v)(I)=v(I). There is, of course, no value de­
fined at a game v which is 1 on ƒ (or, on complements of countable sets) 
and 0 everywhere else. Avoiding that sort of discontinuity, the authors 
introduce the closed span of the functions of measures ƒ(//), p a nonatomic 
probability measure and ƒ a b.v. function continuous at 0 and 1 with 
y(0)=0; on this space, there exists a unique value <p. Moreover, all meas­
ures q>v are countably additive. (And purely nonatomic. The domain of <p 
is a large space, containing pNA9 but in this chapter there are no atoms. 
Still, a finite game can be lifted up by replacing players by intervals.) 

In Chapter II the authors first show the impossibility of carrying over 
analysis (b) directly by means of a probability measure œ on the space of 
total orderings of/, even for the best-behaved space pNA. Indeed, with 
a reformulation putting the invariance on co instead of on ÇJ, the square of 
Lebesgue measure cannot be evaluated in this way. Instead (therefore) 
of averaging evaluations given by all orderings 0t of/, they take the limit 
of evaluations given by orderings 0nâ#9 using a mixing sequence 0n. A 
full statement would perhaps be excessive here; but the quantifiers in the 
definition of the space MIX of games v say that for some nonatomic 
probability measure /uv9 for every measurable order 0t9 for every measure fi 
with respect to which /iv is a.c. and /̂ -mixing sequence {0n}, the evaluations 
of v given by Bn3$ converge to a limit called (again) <pv depending only 
on v. The theorem is that MIX is a closed linear subspace containing pNA 
and q> is a value on MIX. 

Chapter III proceeds straightforwardly with suitably fine finite 
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partitions of /, getting a value on another space of games ASYMP. 
The authors show that (only) now one has a value for the Middle Eastern 
game v in which v([0, £])=*>([£> l])=i , and v is Lebesgue measure on 
subsets of those sets, but "left" and "right" players fight when brought 
together, so that the strength of a mixed coalition is just the measure of 
the excess of left or right players in it. (Those who can find nothing to 
do but work.) The value is identically 0, of course. 

That example is really a difficult game, not only for its players but for 
its evaluator. If the political boundary is moved from the midpoint J, 
the asymptotic value jumps to become A on the majority side, —A on 
the minority side. This is a large change of the game, in the variation norm. 
Indeed, all three values are operators of norm 1. 

Chapter IV introduces fuzzy sets; precisely, the set J of measurable 
functions from / t o [0, 1], called ideal sets. The need for nonreal sets 
appeared in Chapter II, where the authors pointed out that a "random" 
coalition T would be independent of any fixed coalition S (ju(Sr\T)= 
/bi(S)/bi(T) for any fixed probability measure). Also, the construction of the 
unique value cp in Chapter I is related to a formula for those v of the form 

(<pv)(S) = £ /s( 'M') , • • • , tpJLI)) dt9 

where fs is the directional derivative off in the direction (̂ lOS), • • • , 
f*n(S)). Now the authors produce a distinguished linear operator extending 
each v in pNA to real-valued v* defined on ideal sets. They show that 
v8{i)^dv*{tI+rS)jdr (at T = 0 ) exists a.e. (overwhelmingly: for almost 
all t, for all S) and qw is its integral. 

Technically, the extension v* is essential for the generality of the results 
on cores. In case v is a nonatomic countably additive measure, it is inte­
gration, v*(f)=$fdv. The rest is shown to be determined by requiring 
linearity, multiplicativity, and preserving monotonicity. The essence of 
the basic core theorem (the core of a game v is the set of measures which 
are ^v with equality at 7, i.e. which distribute the loot so that every coali­
tion gets as much as it can claim) is in the case of superadditive 
f {fix, • • • , / O with ƒ a C1 function which is homogeneous of degree 1. 
For such a game, the core is shown to be the singleton of the value. 

The economies considered are more simply described in terms of pro­
duction than in (more usual) terms of exchange. There are n kinds of 
raw material and only one kind of finished good. There is a fixed proba­
bility measure ju on ƒ, and a vector-valued raw material density a; 
[s,s+ds] begins with ü(s)/A(ds). There is a technology u=u(x9 s). Coa­
lition S could blindly set to and produce ƒ# w(a(.s), s) d[x(s), but if S 
acts cooperatively it will first redistribute its supply a to some other x—the 
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same amount of material, $s x d/Lt=$8 a dp—to get maximum production 
v(S). The broadest theorem is that if u(x, s)=o(\\x\\) as ||*||->oo (dim­
inishing returns), /j-integrably in s, and smoothness prevails (a integrable, 
u{ , s) C1 interior to the positive orthant and continuous at the boundary, 
u Borel-measurable), then v e MIXnASYMP and the core is the singleton 
of the (mixing=asymptotic) value. If a is strictly positive or there are 
only finitely many types of technology w( , s), then v epNA. 

To follow the treatment of the economic models, one must add Aumann 
and Perles' paper [1] to the book; it is cited for some basic things such as 
the existence of v. 

The treatment of cores and economies occupies Chapters V, VI, and 
the latter part of VII. The one-and-a-half chapters not yet described 
are quite good—had the book ended here and the rest appeared as two 
papers, they would be two big steps forward—but of much narrower 
interest. Let us turn to other aspects for a bit. 

The only alternative to the Harsanyi-Shapley evaluation for finite 
games of this type (i.e., with unrestricted side payments) in the literature 
is the reviewer's [8]. It is true, but somewhat misleading, to say that it 
differs only in constructing a different v and then using the same operator 
vt-+<pv. That is conceptually wrong since the justification is a bargaining 
model patterned after Harsanyi's. And technically, the characteristic 
function v obtained is not only different for particular games but in a dif­
ferent space, for v in [8] (v-; a construct of Harsanyi's, used by him for 
something else) is always strong. The axiomatic justification (a) for Shapley 
value v\-+cpv relativizes to strong v [6], and of course (b) or any other con­
structive procedure relativizes to any subclass. Nothing is known about 
nonatomic extensions of the value of [8]. (Of course, it is as hard a prob­
lem as the extension of Harsanyi's procedure.) 

Aumann and Shapley go far to avoid controversy, and let it be avoided 
(here), but I think they go so far as to mislead the reader. They describe 
their subject as games with unrestricted side payments and fixed threats. 
This is the customary expansive way of saying "games defined by tf\ 
but it ought not to be. A probability mixture of games with actually 
fixed threats does not have fixed threats (this matters for 0.8r45+0.2r90 

in [8], contrasted with r54 which really has fixed threats). So anyone 
treating a whole Banach space of games is not really discussing fixed-
threat games. 

Aumann and Shapley do not cite the reviewer or Selten, but they cite 
Harsanyi, unfortunately only for the 1959 version of his model [3]. 
That was superseded by the later version [4]. We are assured that the 
revision was not prompted by the reviewer's criticism. Still, if Aumann 
and Shapley really mean to resurrect a theory of seat prices which sells 
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for 9 units the right to play in a game in which one can certainly gain 
10 units, no matter what the other players do (not a game of the type 
treated in this book, but nothing in the game involves subtraction [7]), 
they ought to offer some statement about it. 

Now if we consider the whole 358-page book consisting of the book 
under review, Appendix A of [2], and [1], it is superb exposition. Defi­
nitions and results are clearly labeled. Definitions can be found, via the 
11-page general index and the page of names (mostly of subspaces of 
BV). Precise and imprecise discussions are clearly separated, and both are 
given when needed. Many notes describe related results, and some 
instructive ideas for simplification or extension that do not work. In 
four of the chapters, the main results are described in a section after the 
first, and for good reasons. I suspect that the six ways suggested to read 
only selected parts of the book will not work very well, but they could 
work in principle. Reading the whole book, one has practically all the 
nonatomic game theory that now exists. One may hope that in a few years 
there will be other books giving much more material. Even then, be­
ginners will surely make good use of Aumann-Shapley, since there is no 
reasonable prospect of its successors' being so well written. 

Physically, the book sustains the high standards of the Princeton Press. 
The value theory, we have seen, is uniquely determined by the axioms 

on a space larger thanpNA; onpNA, it is given also by mixing transfor­
mations (or sequences), by finite approximations, or by a formula 
ƒ vs(0 dt. Two of the constructive approaches carry further, over MIX, 
ASYMP respectively. It is not known if they are consistent on MIXn 
ASYMP. 

The further results are less simply stated. The most convincing showing 
that they extend a single theory (and are not just artificial extreme exten­
sions of techniques) is the application already stated, the expected result 
for Walrasian economies with artificial assumptions (strict positiveness, 
finite type) removed. More broadly, these results turn on the same ideas 
taken in weaker senses. The possibilities seem by no means exhausted. 
For a frivolous illustration, one might try generalizing greatly the C1 

functions at the heart of pNA and using derivatives in the sense of distri­
bution theory. 

The third construction, the integral formula, also extends further. 
For this to be possible (using Newton-Leibniz derivatives), one must first 
have an operator vh+v* beyond pNA. That is gotten by observing that 
i?h->t?* is continuous even in the sup norm. As it is linear, it therefore 
extends over the sup-norm closure ofpNA ; and the new operator is shown 
to retain the basic properties. 

The next idea (the keynote of Chapter VII) is motivated most simply 
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by inspecting the integral formula. It determines (on pNA) cpv from deriva­
tives of v* at ideal sets tl only, i.e. along the diagonal. Accordingly cpv 
is determined by the values of v* on any neighborhood of the diagonal. 
The authors abstract this "diagonal property" in terms of v (not v*) 
as follows: v e DIAG if there is a &-tuple £ of nonatomic probability 
measures such that v vanishes at every coalition taken by £ into some 
(fixed) neighborhood of the diagonal in A>space. All values yet constructed 
vanish wherever defined in DIAG. Adding this to the definition of value— 
for the definition of diagonal value—one gets an obvious extension of the 
uniqueness theorem. Further, /^iV^+DIAG^ASYMP. On the inter­
section of the variation-norm closure of pNA+D1 AG and the sup-norm 
closure of pNA, the integral formula gives the unique (and asymptotic) 
diagonal value. In the same space, the core theorem holds under approp­
riate superadditivity and homogeneity conditions. Only a somewhat smaller 
space is shown to be contained in MIX, but enough for the Walrasian 
economies. 

As suggested earlier, Aumann and Shapley see these operators as worth 
having apart from any connection with games. In this spirit, they con­
clude with a short chapter on "games" on a nonstandard measurable 
space. All three initial approaches fail here for lack of measurable auto­
morphisms, mixing sequences and sequences of finite partitions. YttpNA 
and v\-+v* stand like a stone wall. Everything not involving MIX or 
ASYMP is restored if the invariance axiom is replaced by a normali­
zation condition: under suitable restrictions, 9>(/(/f))=jW. That is sub­
stantially all, though the asymptotic theory holds over subspaces of a 
standard space. 

J. R. ISBELL 
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Convolution equations and projection methods for their solution, by I. C. 
Gohberg and I. A. Fel'dman, American Mathematical Society Trans­
lations, vol. 41, 1974, ix+261 pp. 

Suppose Sx and 2?2
 a r e Banach spaces, {PT} and {QT} are families of 

projection operators on ^B± and 2?2 respectively which converge strongly 
as r-*oo to the respective identity operators, and A is a bounded linear 
transformation from 23i to 232. One says that the projection method 
(PT9 QT) is applicable to A if, roughly speaking, {QTAP^yx converges 
strongly to A~x as r-*oo. More precisely what is required is that QTAPT9 

as an operator from P^&x to ôr232, be invertible for sufficiently large r 
and that {QTAPT)"1QT converge strongly as T-*OO. (Then A is necessarily 
invertible and the strong limit is A"1.) 

To give an example, the prototype of those considered in this book, 
let a be a bounded function defined on the unit circle having Fourier 
coefficients ak (&=0, ± 1 , • • •), and consider the operator A on /2 of the 
positive integers defined by 

{ 00 Ï 0 0 

This is the (semi-infinite) Toeplitz operator associated with a. The pro­
jections are the simplest ones: Pn=Qn=projection on the subspace of 
sequences {£,} satisfying f,=0 for y >«. The operator PnAPn may then be 
represented by the finite Toeplitz matrix 

and the question is whether these matrices are invertible from some n 
onward and, if so, whether the inverses of these matrices converge strongly 


