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Complete normed algebras, by F. F. Bonsall and J. Duncan, Ergebnisse 
der Mathematik und ihrer Grenzgebiete, Band 80, Springer-Verlag, 
New York, Heidelberg, Berlin 1973, x+301 pp. $26.20 

It was in 1939 that I. M. Gelfand [10] announced the results of his 
pioneering investigations of Normed Rings, thereby launching a new 
field of mathematical research which continues 35 years later in a state of 
vigorous development. For Gelfand, a normed ring was in fact a com­
plete normed algebra; i.e., an algebra for which the underlying vector 
space is a (usually complex) Banach space and multiplication is continuous 
with respect to the given Banach space norm. Continuity of multiplication 
is usually provided by imposing the multiplicative inequality, ||xy||^ 
||x|| ||ƒ ||, on the norm. For obvious reasons, these algebras have come to 
be known as "Banach algebras", a term which is now rather firmly estab­
lished in the literature.1 Such algebras were in fact studied earlier by 
M. Nagumo [18] and K. Yosida [26] who called them "metric rings". 
Also, as might be expected, some of the concepts arising in the earlier 
study of operators on a Banach space, as well as the study of certain 

1 The authors remark (p. 4) that they would have preferred the term "Gelfand 
algebra" for a complete normed algebra. Although the reviewer had much to do with 
establishing the term "Banach algebra" and has a strong preference for terminology 
that suggests the nature of the indicated object, he agrees that "Gelfand algebra" 
would have been a most appropriate choice. Since this book will no doubt be widely 
accepted, the authors, given the courage of their convictions, probably could have 
effected the change. 
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special Banach spaces, are closely related to Banach algebra notions. 
In addition we have the highly developed theory of Rings of Operators, 
now called von Neumann algebras, a subject which dates back to a 1929 
paper of J. von Neumann [19] and subsequently developed in a series of 
papers by F. J. Murray and von Neumann appearing between 1935 and 
1943. Since these algebras are also Banach algebras, there has naturally 
been substantial interaction between the two theories. However, the study 
of von Neumann algebras is dependent on special techniques so peculiar 
to these algebras that the subject continues to grow more or less inde­
pendently of the general theory. 

In spite of these earlier studies, it was Gelfand who gave the subject 
its proper setting through his recognition of the fundamental roles played 
by elementary ideal theory and an elegant characterization of the com­
plex numbers as a normed division algebra. A proof of this characteri­
zation, announced without proof by S. Mazur [17], was provided by 
Gelfand [11]. His fundamental result was that every commutative Banach 
algebra (with unit) is homomorphic to an algebra of continuous functions 
on a certain compact Hausdorff space (maximal ideal space), the kernel of 
the homomorphism being the radical (intersection of maximal ideals) 
of the algebra. The key fact here is that the algebra, modulo a maximal 
ideal, is isomorphic with the complex numbers. Gelfand also applied his 
theory to a number of algebras of great interest in Analysis, exhibiting 
an equivalence of natural Banach algebra concepts with important 
analysis concepts. These applications provided the motivation, necessary 
at the time, for analysts to adopt the algebra approach2 required by the 
Gelfand theory. 

It is remarkable that in a series of papers, published between 1939 and 
1944 by Gelfand and his collaborators, virtually all of the main lines along 
which the theory of Banach algebras would develop for a period of 25 
or 30 years were already laid down. The only important exception was the 
involvement with the theory of analytic functions of several complex 
variables (SCV), initiated in 1953 by a paper of G. E. Shilov [22] in 
which an operational calculus for several Banach algebra elements was 
introduced. A limitation in Shilov's result, which amounted to a restriction 
to finitely generated algebras, was removed by R. Arens and A. P. 
Calderón [4] and the end result became known as the Shilov-Arens-
Calderón theorem. In 1954 and presumably independently of Shilov, 
L. Waelbroeck [25] gave a more general and, as it turns out, a more 

2 Although a "linear space" point of view had found its way into Analysis via Func­
tional Analysis, an analogous "algebra" point of view was much later in coming. An 
operation of multiplication, when available, tended to be regarded as a convenient 
tool rather than as a structure property. 
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natural definition of the operational calculus. The Waelbroeck approach 
was unfortunately neglected by many (including the reviewer) perhaps 
because Shilov's approach was through A. Weil's SCV generalization 
of the Cauchy integral formula and therefore related directly to the famil­
iar Cauchy formula method of defining functions.of single elements. In any 
case, the bringing of SCV methods into the study of Banach algebras has 
turned out to be a stimulating and productive event. It has also led to a 
number of applications of Banach algebra methods in SCV. 

The field of Banach algebras came into existence through a bringing 
together of ideas from Analysis and Algebra and the interaction of the 
two disciplines continues to be an important stimulus to the development 
of the subject. Although sharp distinctions between the traditional 
fields of mathematics no longer exist, there is nevertheless a difference in 
approach within Analysis and Algebra which is clearly reflected in the 
work on Banach algebras. Roughly speaking, the Analysis approach 
tends to concentrate on certain special concrete examples, or their general­
izations, and involves extensive use and generalization of results from 
classical analysis, with algebra often playing a secondary role. On this side 
we have, for example, the study of group algebras (as a setting for abstract 
harmonic analysis) and function algebras, both of which have received 
much attention over the years. The study of function algebras has been 
especially active in the last 15 years or so, involving progressively deeper 
results from "hard" analysis. As might be expected, the bulk of the func­
tion algebra problems are concerned in one way or another with analyti-
city questions going back either to one or to several complex variables. 

The Algebra approach is dominant in the "general theory" of Banach 
algebras, where the problems tend to be concerned with structure and 
representation theory while the Analysis involved is generally Functional 
Analysis. In this area we have some very interesting and subtle interactions 
of the two fields. An especially good example is the beautiful result, 
finally proved by B. E. Johnson [13], that the topology of a semisimple 
Banach algebra is uniquely determined, i.e. any two norms under which it 
is a Banach algebra must be equivalent. Numerous other such results 
could be cited, including the many interesting topological overtones 
that occur in the Banach algebra versions of the standard theory for rings. 

The opening paragraph of the present book provides an unusually 
clear statement of the nature and importance of the theory of Banach 
algebras in mathematics as well as an indication of the spirit in which the 
book is written: 

The axioms of a complex Banach algebra were very happily 
chosen. They are simple enough to allow wide ranging 
fields of application, notably in harmonic analysis, operator 
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theory, and function algebras. At the same time they are 
tight enough to allow the development of a rich collection 
of results, mainly through the interplay of the elementary 
parts of the theories of analytic functions, rings and Banach 
spaces. Many of the theorems are things of great beauty, 
simple in statement, surprising in content, and elegant in 
proof. We believe that some of them deserve to be known 
by every mathematician. 

The authors' aim is "to give an account of the principal methods and 
results in the theory of Banach algebras, both commutative and non-
commutative." However, certain of the special classes of algebras, such 
as C*-algebras, function algebras, and group algebras are not treated in 
detail. Also omitted are a few topics that might naturally have been 
included such as the theory of multipliers, extensions of Banach algebras 
and the implications for Banach algebras of some of the standard con­
ditions on rings; and, finally, the various generalizations of Banach alge­
bras are not included. The emphasis is clearly on the general theory with 
the algebra approach much in evidence, especially in the later chapters. 
Therefore the book might be regarded as a sequel to the reviewer's book 
on the General theory of Banach algebras [21] which appeared in 1960. 
In the intervening period, there has been much progress, so an updating 
of the subject was overdue. Also there has been a recent upsurge of in­
terest in the general theory stimulated in part by some of the development 
in ring theory. Therefore this book makes its appearance at an opportune 
time. It is well organized and well written with numerous cross-references 
which make for easy reading. The style is somewhat formal but is periodi­
cally relieved by examples and remarks directed to the literature as well as 
various open questions. The proofs, in many cases quite elegant, are 
carefully and clearly, though sometimes rather cryptically, presented. 
All in all, this is a fine book which will be very useful both to the specialist 
and also to anyone else who might want an introduction to the subject. 

The book is divided into 50 sections which are in turn grouped into 
seven chapters. The chapter titles and section headings give in most 
instances a fair indication of the contents. However we have included a 
few remarks to bring out some of the special features. 

Chapter 1. Concepts and elementary results, (§1. Normed algebras. 
§2. Inverses. §3. Quasi-inverses. §4. Equivalent norms. §5. The spectrum of 
an element of a complex normed algebra. §6. Contour integrals. §7. A 
functional calculus for a single Banach algebra element. §8. Elementary 
functions. §9. Ideals and modules. §10. The numerical range of an element 
of a Banach algebra. §11. Approximate identities. §12. Involutions. 
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§13. The complexification of a real algebra. §14. Normed division alge­
bras.) 

In §5 a simple abstract Runge theorem is proved for elements of a Ban-
ach algebra and applied in §7 to give a nice proof of the classical Runge 
theorem on rational approximation of holomorphic functions. A review 
of the elementary theory of integration of vector-valued functions is 
given in §6 as a basis for the functional calculus in §7. This section also 
contains an elegant proof of the Cauchy formula for complex functions 
defined on a "punched disc" (i.e. a closed disc minus an arbitrary finite 
union of open discs) and a generalization of the Taylor and Laurent series 
expansions of holomorphic functions which provides a simple treatment 
of the functional calculus in §7. The numerical range of an element a of 
a Banach algebra A (with unit) is the set V(a)={f(a):fe A', \\f\\ = 
/(1)=1}, where A' denotes the Banach space dual of A. It is a convex, 
compact set that contains the spectrum of a. §10 contains some of the 
properties of numerical range needed later in the discussion of star alge­
bras. The main results in §11 are concerned with the factoring of elements 
of a Banach algebra due essentially to P. Cohen [9], §14 contains, in 
addition to the Mazur-Gelfand theorem, a complete proof that every 
normed division algebra over the real numbers is isomorphic to either 
the reals, complexes or quaternions. 

Chapter II. Commutativity. (§15. Commutative subsets. §16. Mul­
tiplicative linear functionals. §17. The Gelfand representation of a com­
mutative Banach algebra. §18. Derivations and automorphisms. §19. 
Generators and joint spectra. §20. A functional calculus for several Banach 
algebra elements. §21. Functions analytic on a neighborhood of the Carrier 
space. §22. The Shilov boundary. §23. The Hull-Kernel topology.) 

In §18 a number of results for derivations on a Banach algebra to 
itself and the connection with automorphisms of the algebra are obtained. 
Included here is the result due to I. Singer and J. Wermer [23] that every 
continuous derivation on a complex commutative Banach algebra A maps 
A into the radical and the result due to B. E. Johnson [14] that if A is 
semisimple, then the only derivation (continuous or not) is zero. The 
Shilov-Arens-Calderón theorem, mentioned earlier, is proved in §§19 and 
20. In §21 the carrier space <t>A (space of maximal ideals) is regarded as 
a subset of A', the Banach space dual of A, where A' is given the weak* 
topology. A function ƒ defined on an open neighborhood of <bA in A' is 
called "analytic" if it is locally bounded and each function of the form 
/oir is holomorphic in the usual sense on ^ ( D ) , where 7T\Cn->Af is 
an affine map and n is arbitrary. The main result, due to G. R. Allan [2] 
asserts that there exists us A such that/(ç>)=9>(t/) for <p e <bA. 
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Chapter III. Representation theory. (§24. Algebraic preliminaries. 
§25. Irreducible representations of Banach algebras. §26. The structure 
space of an algebra. §27. ,4-module pairings. §28. The dual-module of a 
Banach algebra. §29. The representation of linear functionals.) 

Use is frequently made of the equivalence of representations of A on a 
linear space with left ^4-modules. In §25 it is proved that every represen­
tation of a Banach algebra A in the bounded operators on a normed linear 
space is automatically continuous. This is essentially B. E. Johnson's 
uniqueness of norm theorem mentioned earlier. In §26 we have the repre­
sentation of a semisimple Banach algebra as a normed subdirect sum of 
primitive Banach algebras. The structure space is the space of primitive 
ideals. The last three sections (§§27-29) contain results of the authors 
[6]» [7] in which some of the linear functional techniques, so useful in the 
case of commutative and star algebras, are extended to the general case. 

Chapter IV. Minimal ideals. (§30. Algebraic preliminaries. §31. Mini­
mal ideals in complex Banach algebras. §32. Annihilator algebras. 
§33. Compact action on Banach algebras. §34. //*-algebras.) 

In this chapter the sharper structure theorems available when the alge­
bras contain minimal ideals are obtained. The results are especially nice 
for annihilator algebras which are defined by the condition that the right 
(left) annihilator of a closed left (right) ideal is equal to zero if and only if 
the ideal is the whole algebra. The concept is due to Bonsall and A. W. 
Goldie [8]. §32 contains an elegant treatment of these algebras. In §33 
a Banach algebra A is defined to be compact if the mapping, ah-*tat, for 
each t e A defines a compact linear operator on A. This notion is due to 
J. C. Alexander [1]. If A is compact, then each of its primitive components 
is compact and admits a norm reducing isomorphism with an irreducible 
algebra of compact operators on a Banach space. In §34 an #*-algebra is 
defined to be a Banach star algebra whose norm is given by an inner 
product, (x,y), such that (ax, y)=(x9 a*y) and (xa, y)=(x, ya*) for 
all a, x9 y in the algebra. H*-algebras were introduced by W. Ambrose 
[3] who did not require a unique a* for each a. The notions coincide, 
however, for semisimple algebras. 

Chapter V. Star algebras. (§35. Commutative Banach star algebras. 
§36. Continuity of the involution. §37. Star representations and positive 
functionals. §38. Characterizations of C*-algebras. §39. i?*-seminorms. 
§40. Topologically irreducible star representations. §41. Hermitian 
algebras.) 

Aside from function algebras, the most studied Banach algebras are those 
possessing an involution. These algebras (called here Banach star algebras), 
which include C*-algebras (closed selfadjoint algebras of operators on 
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Hubert space) and hence von Neumann algebras, provide one of the 
richest and most satisfying portions of the general theory. This chapter 
contains refinements and extensions of some of the well-known results 
for star algebras and their representations. Properties of the numerical 
range of an element of a Banach algebra are used in §38 to give an elegant 
treatment of the characterization of C*-algebras as i?*-algebras. This 
section also contains an interesting characterization of i?*-algebras in terms 
of numerical range attributed to I. Vidav [24] and T. W. Palmer [20]. 

Chapter VI. Cohomology. (§42. Tensor products. §43. Amenable 
Banach algebras. §44. Cohomology of Banach algebras.) 

A brief introduction to the cohomology groups, Hn(A9 X)9 of a Banach 
algebra A with coefficients in a Banach ̂ -bimodule X is given in §44. The 
group H\A, X)\s equal to the linear space of all bounded ̂ -derivations of 
A (i.e. bounded linear transformations D:A-+X such that D(ab)=aDb+ 
(Da)b) modulo its subspace of inner Jï-derivations (i.e. the derivations 
bx\a\-+ax—xa9 x e X). Thus H\A9 X)=(0) means that every bounded 
X-derivation is inner. Associated with the ^4-bimodule X we have the 
dual ^4-bimodule X', where X' is the dual of X and, for a e X and x' e X', 
(ax')(x)=x\xa) and (x'a)(x)=x'(ax)9 xeX. lîH\A9 X')=(0) for every Z, 
then the algebra A is said to be amenable. The terminology comes from the 
fact that a group G is amenable (admits an invariant mean) if and only if 
the discrete group algebra lx(G) is amenable. §43 contains a number of 
results for amenable Banach algebras due mainly to B. E. Johnson 
[15], [16]. Some of the proofs involve tensor products discussed in §42. 

Chapter VII. Miscellany. (§45. Quasi-algebraic elements and capacity. 
§46. Nilpotents and quasi-nilpotents. §47. Positiveness of the spectrum. 
§48. Type 0 semialgebras. §49. Locally compact semialgebras. §50. g-
algebras.) 

A definition of capacity for elements in a Banach algebra is given in 
§45. The capacity of an element turns out to be equal to the capacity, in 
the classical sense, of its spectrum. An element is quasi-algebraic if its 
capacity is zero. The latter notion is due to P. R. Halmos [12]. §§47-49 
contain topics from the theory of semialgebras which was initiated by the 
first author [5]. In §50, a Q-algebra (IQ-algebra) is a complex commutative 
Banach algebra A which is bicontinuously (isometrically) isomorphic to 
a Banach algebra of the form B\J9 where B is a closed subalgebra of C(X) 
for some compact Hausdorff space X and / is a closed ideal in B. The con­
cept is due to N. Th. Varopoulos. It is not very clear why the authors 
choose to include Chapter VII in its present form. All of the material 
except for semialgebras, a topic which might conceivably have rated a more 
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complete treatment in a chapter of its own, seemingly could have been 
incorporated into the other chapters. 

The Bibliography, which is not intended to be comprehensive, consists 
mainly of items that relate to the general theory of Banach algebras and 
no attempt was made to cover areas such as function algebras, C*-
algebras, von Neumann algebras, harmonic analysis, numerical range, 
and general topological algebras. The fact that it nevertheless contains 
488 items gives some indication of the amount of activity that there has 
been in this area. There is also a very good general index plus a useful 
special index of symbols. 

C. E. RICKART 
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The structure of factors, by S. Anastasio and P. M. Willig, Algorithmics 
Press, New York, 1974, iii+116 pp. 
In a paper appearing in the 1929 Mathematische Annalen {Zur Algebra 

der Funktionaloperatoren und Theorie der normalen Operatoren), von 
Neumann initiated the study of Rings of operators (renamed von Neumann 
algebras in J. Dixmier's classic, Les algèbres d'opérateurs dans l'espace 
Hilbertien, Paris, 1957). These are algebras, JR, of bounded linear trans­
formations (operators) of a Hubert space //into itself, closed in the strong-
operator topology (An-+A means that Anx-+Ax, for each x in H) and 
having the property that A*, the adjoint of A, is in R if A is. Von Neumann 
saw two motivating forces behind the study of these algebras: applications 
to the newly emergent Quantum Physics, and application to the study of 
infinite groups. Quantum Physics, as it was being formulated, was in­
volved with algebraic combinations of (selfadjoint) operators. It was 
certain to require (at the mathematical level) a deeper understanding of the 
structure of algebras of operators. The technique of group algebras had 
been so useful in the study of finite groups that some corresponding 
construct for infinite groups was certain to be crucial for their analysis. 

The detailed study of von Neumann algebras was undertaken in a series 
of papers written in collaboration with F. J. Murray. The first appeared 
in the 1936 Annals of Mathematics, On rings of operators. Since noncom-
mutativity was the basic technical problem, Murray and von Neumann 
moved quickly to the study of those von Neumann algebras, factors, 
whose centers consist of scalar multiples of the unit element. 

As in much of Functional Analysis, the statements of results in the 
theory of operator algebras are algebraic in flavor. The ideas, proofs and 


