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1. Introduction. As a generalization of the well-known class number 
formula of an algebraic number field, we obtain in [3] a formula for the class 
number of an arbitrary algebraic torus defined over the rational number field 
Q. With this generalized class number formula, the relative class number of 
two isogenous tori can be expressed in terms of their Tamagawa numbers and 
certain indices of maps induced naturally by an isogeny between them. To be 
specific, let X: T —• T' be an isogeny of tori defined over Q. The isogeny in­
duces naturally the following maps (cf. [3]): 

For a homomorphism a: G —• G ' of commutative groups with finite kernel 
and cokernel, we define the ^-symbol of a by q(a) = [Cok a]/[Ker a]. Then, 
the #-symbols of the above maps are finite, and #(Xy) = 1 for almost all v 
(cf. [3]). The relative class number hTlhT> of T, T' over Q can now be ex­
pressed as (cf. [3]): 

m it.i._^_.n^ 
"T 'r' «(XSM(»)Q) "*-

In this paper, we apply (1) to the study of relative class numbers of cer­

tain quadratic extensions of algebraic number fields. 

2. Relative class numbers. Let k/Q be a finite extension, and K/k be a 
Galois extension of finite degree n. Denote by JV the norm map 
^K/k^m) —> ^m' where RK/k is the Weil functor of restricting the field of 
definition (cf. [4]), and Gm is the multiplicative group of the universal domain. 
We have an exact sequence (N) 0 ~+ Ker Â  -L>JR/c/fc(Gm) —> Gm —> 0 of 

AMS(MOS)subject classifications (1970). Primary 12A50, 20G30. 
*This paper is based on a part of the author's Ph.D. thesis written at Johns 

Hopkins University. For the unexplained notions, see [3]. 
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tori defined over k, where i is the canonical inclusion. We attach to (N) an 
isogeny X': RK/k(Gm) —> Ker TV x Gm defined by X'(x) = (xnN(x)~1 ,N(x)). 
Applying the Weil functor Rk/Q to X', we have an isogeny X: T —+ T' x r" 
defined over Q, where X, T, r', T" denote Rk/Q(\'), RK/Q(Gm), Rk/Q(KexN)9 

Rk/Q(Gm) respectively. From (1), we obtain 

THEOREM 1. Let K, k, T', X be as above. Then we have 

hjs hT> ^(Xoo) TT 

** Tr' <?(X$M00Q) »*~ 

3. Relative quadratic extensions. If K is a quadratic extension of fc, we 
can interpret hT> in the following way. Consider A' together with the norm 
NK/k as a binary quadratic space over k. Then Ker TV is nothing but the spe­
cial orthogonal group of the quadratic form NK/k. By fixing a basis, we iden­
tify K with k2. A finitely generated Ofc-submodule of K of rank 2 is called 
a lattice in £ , where Ofc is the ring of algebraic integers in k. In particular, 
L = 0\ (relative to the fixed basis) is a lattice, called the standard lattice. 
The adele group (Ker N)A and the group (Ker A \ both act on the set of lat­
tices in K (cf. [2]). The orbit of L under (KerA/\ is called the class of L. 
The orbit of L under (KerAf)A is called the genus of L. We see immediately 
that the number hT> is the number of classes in the genus of L. Thus, in this 
case Theorem 1 establishes a relation among the class numbers of K, k, and 
the quadratic form belonging to K/k. In the following examples, we shall ap­
ply Theorem 1 to some interesting cases. 

EXAMPLE 1 (Quadratic fields). Let k = Q and K = Q(\/m), where m is 
a square-free integer. Computations using results in class field theory show 
that TT> = 2, <7((X)Q) = 1, qÇK^) = 1, <?(XQ) = 2 if m < 0, or m > 0 and 
NK/Q(€) = - 1 for some eGO^, #(XQ) = 4 if m > 0, and AA:/Q(e) = 1 for 
some eGO^, and nu=jfeoo#(X£) = 2 f + *, where t is the number of distinct 
prime factors of the discriminant dK of K. Hence, Theorem 1 is simplified to 

h (I*"1 if m < 0 or m > 0 and NK/Q(e) = - 1, 

V (2'~2 if m > 0 and iV^/gCe) = 1. 

This is equivalent to the following well-known result due to Gauss: there are 
2*_1 genera of primitive integral binary quadratic forms with discriminant dK 

(which are positive-definite if dK < 0). 
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EXAMPLE 2 {Prime cyclotomic fields). Let K be the /th cyclotomic field 
over Q, and k the maximal totally real subfield of K, / = 2m + 1 being an 
odd prime number. We prove in [3] that q{(k)Q) = 1, q{\00) = M O Q ) = 2m , 
Uv¥:00q(Xl) = 2m + 1 , and r r ' = 2. Therefore, Theorem 1 in this case gives 
hKlhk = hT>. Thus, we have an interpretation for the first factor in the well-
known factorization of hK due to Kummer. Moreover, we obtain the follow­
ing: 

THEOREM 2. Let g be a primitive root modulo I. For any positive inte­

ger 5, let gs denote the smallest positive residue of jf modulo I. Then there 

are 

(11(21)"*-') • ldetfrM + i + / - *„ . , )o<W<«- i ' 

classes in the genus of the standard lattice in K with respect to the binary qua­

dratic form NK/k. 

EXAMPLE 3 {Totally imaginary quadratic extension of a totally real field). 

Let k be a totally real number field, and ô a totally negative number in k. 

Then K = k(y/E) is a totally imaginary quadratic extension of k. Hecke con­
jectured that the relative class number hKlhk should be expressible in terms 
of elementary arithmetic functions of certain types (cf. [1]). We hope that 
the relation described in Theorem 1 may throw a new light on Hecke's con­
jecture. 
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