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1. This note is to present a new example which reveals the impossibility 
of embedding a 2-torus in a 4-manifold. 

THEOREM 1. There exists a compact ^-dimensional PL manifold W4 

with boundary satisfying the following conditions: (i) W4 is homotopically 
equivalent to the 2-torus T2 = S1 xS 1 , and (ii) no homotopy equivalence 
T2 —• W4 is homotopic to a PL embedding. 

By a PL embedding is meant one which is not necessarily locally flat. 
Theorem 1 is an application of the codimension two surgery theory 

developed in our previous papers [4], [5], [6]. The phenomena of "total 
spinelessness" in higher dimensions (with finite 71̂ 's) were found by Cappell 
and Shaneson [2] using another method of surgery2 [1]. 

A calculation in our proof leads to another consequence concerned with 
submanifolds in codimension two. Let K4n denote a product CP2 x • • • x 
CP2 of «-copies of the complex projective plane CP2. 

THEOREM 2. For each n > 0, there exists a locally flat embedding h^n^ 
of K4n x S1 into the interior of K4n x D2 x S1, which is homotopic to the 
zero cross section K4n x {0} x S1, but is not locally flatly concordant to a 
splitted embedding. 

A splitted embedding (with respect to a point * of Sl) means a locally 
flat embedding ƒ: K4n x S1 —> K4n x D2 x Sl such that (i) ƒ is transverse 
regular to K4n x D2 x {*} so that the intersection M4n = flK4n x S1) n 
K4n x D2 x {*} is a closed manifold, and (ii) the inclusion M4n —> K4n x 
D2 x {*} is a homotopy equivalence. 

Theorem 2 contrasts with Farrell and Hsiang's result [3] which may be 

AMS (MOS) subject classifications (1970). Primary 55C45, 57C65, 18F25; 
Secondary 55A25, 55C35. 

ÎThe author is partially supported by the Füjukai Foundation. 
2Their theory (with T-groups) and ours (with P-groups) are not the same but both 

admit a more general unifying algebraic treatment [ 7 ] . 
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considered as the splitting theorem in codimension > 3. 

2. Construction of W4. Let h: S1 —• S1 x D2 be an embedding indi­
cated in Figure 1. Essentially the same embedding S1 —• S1 x S2 was used 
by Mazur [8] to construct a contractible 4-manifold. 

FIGURE 1. Mazur's embedding 

Extend h to a framed embedding h: S1 x D2 —> S1 x D2 in such a way that 
h followed by the natural inclusion S1 x D2 —• S3 is isotopic to a trivial knot 
with a trivial framing. Our manifold W4 is the mapping torus of the framed 
embedding h. More precisely, W4 is obtained from a product S1 x D2 x 

[0, 1] by identifying (*, £) x {1} with h(x, Ç) x {0} for each (x, Q G ^ 1 x 
D2. Since h is homotopic to the zero cross section S1 x {0} —• S1 x D2, 

W4 is homotopically equivalent to T2. 

Moreover, the embedding h,4n^ in Theorem 2 is nothing other than 
id^ x h: K4n x S1 —• K4n x S1 x D2, h being Mazur's one. 

3. Sketch of proof. We first give some generalities. Suppose a compact 
connected oriented PL 2n + 2-manifold v2n*2 has the same simple homotopy 
type as an oriented Poincaré complex of formal dimension 2n > 6. Let IT —• 
ir denote the associated (onto) homomorphism with v2n+2 defined to be 
irt(y- L) —• 7r1(P0» where L2n is an exterior w-connected (i.e. taut) 2w-sub-
manifold of v2n+2 [4]. The kernel of IT —> ri is generated by a (specified) 
central element r represented by a fiber of the associated S1 -bundle with a 
2-disk bundle neighbourhood N of L2n. 

A (- l)nSeifert form over n —• ri is, by« definition, a (not necessarily 
nonsingular) ( - l)nMiermitian form defined over Zn which becomes nonsingular 
over Zri (after tensored with Z-n). 
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Then the left Z7r-module iTn+l(V- L, N - L) is proved to carry a 
(- l)w-Seifert form whose class in P2n(n —* n)3, the "Witt group" of (- l)w-
Seifert forms over IT —• ri, does not depend on L. Denote the class by 
r\(V) E P2n(n —• 7r'). Then r\(V) = 0 if and only if V admits a locally flat 
spine [6]. 

Now with the notations of §2, the product W4 x CP2 has the homo-
topy type of T2 x CP2. The associated homomorphism with it is {Z x Z x 
Z —• Z x Z} = (Z —» 1) x Z x Z, and the obstruction element r\(W4 X CP2) 
is proven to be in the image of the injective homomorphism 

U: P6(fZ — 1) x Z) - > P6((Z - M ) x Z x Z). 

Utrf^jVWW* xCP2)). 
LEMMA 1. The element 77' ofP6((Z - > 1) x Z) w represented by a 

(- lySeifert form (G, X, JU) ẑvew by: G = AJCX 0 Ax2, \(xv x2) = -s""1, 
JU(XJ) = 5 - 1 , M(^2) = ""̂ » where A = Z[/, r"1, s, s~x], t (or s) denoting 
the positive generator of the first (or the second) Zof(Z —• 1) x Z. 

REMARK. The matrix (\(xif xj)) of the (- 1)-Seifert form of Lemma 
1 is 

\ st, - 1 + f / , 

the determinant of which coincides (up to units) with the Alexander poly­
nomial of Mazur's link (Figure 1) calculated by the method of Torres and 
Fox [9]. 

LEMMA 2. 17' is not in the image of 

/ * : / > 6 ( Z ^ l ) - > P 6 ( ( Z - > l ) x Z ) . 

The proof of Theorem 1 goes as follows. Suppose that there were a 
spine T\ C W4. T\ may be assumed to be locally flat except at one point. 
The product T\ X GP2 is a spine of W4 x CP2 whose singularity is of the 
type (knot cone) x CP2. Since ifx({pt) x CP2) = {1}, this singularity is 
replaced by a knot cone singularity over a knotted 5-sphere in a 7-sphere [4], 
[6, §6.4]. This implies that the r\(W4 x CP2) is in the image of ƒ* <> /*, 
since P6(Z —• 1) is isomorphic to the (7, 5)-knot cobordism group [6]. 
However, this contradicts Lemma 2. 

3This notation slightly differs from the original one [ 6 ] . 
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REMARK. If we start the construction with the embedding indicated 
in Figure 2, we will obtain W4 which admits a locally flat spine. 

FIGURE 2. False embedding 
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