A 4-MANIFOLD WHICH ADMITS NO SPINE

BY YUKIO MATSUMOTO¹

Communicated by Edgar Brown, Jr., October 26, 1974

1. This note is to present a new example which reveals the impossibility of embedding a 2-torus in a 4-manifold.

THEOREM 1. There exists a compact 4-dimensional PL manifold W^4 with boundary satisfying the following conditions: (i) W⁴ is homotopically equivalent to the 2-torus $T^2 = S^1 \times S^1$, and (ii) no homotopy equivalence $T^2 \longrightarrow W^4$ is homotopic to a PL embedding.

By a PL embedding is meant one which is not necessarily locally flat.

Theorem 1 is an application of the codimension two surgery theory developed in our previous papers [4], [5], [6]. The phenomena of "total spinelessness" in higher dimensions (with finite π_1 's) were found by Cappell and Shaneson [2] using another method of surgery² [1].

A calculation in our proof leads to another consequence concerned with submanifolds in codimension two. Let K^{4n} denote a product $\mathbb{C}P_2 \times \cdots \times \mathbb{C}P_n$ CP_2 of *n*-copies of the complex projective plane CP_2 .

THEOREM 2. For each $n \ge 0$, there exists a locally flat embedding $h_{(4n)}$ of $K^{4n} \times S^1$ into the interior of $K^{4n} \times D^2 \times S^1$, which is homotopic to the zero cross section $K^{4n} \times \{0\} \times S^1$, but is not locally flatly concordant to a splitted embedding.

A splitted embedding (with respect to a point * of S^1) means a locally flat embedding $f: K^{4n} \times S^1 \longrightarrow K^{4n} \times D^2 \times S^1$ such that (i) f is transverse regular to $K^{4n} \times D^2 \times \{*\}$ so that the intersection $M^{4n} = f(K^{4n} \times S^1) \cap$ $K^{4n} \times D^2 \times \{*\}$ is a closed manifold, and (ii) the inclusion $M^{4n} \longrightarrow K^{4n} \times K^{4n}$ $D^2 \times \{*\}$ is a homotopy equivalence.

Theorem 2 contrasts with Farrell and Hsiang's result [3] which may be

AMS (MOS) subject classifications (1970). Primary 55C45, 57C65, 18F25; Secondary 55A25, 55C35.

¹The author is partially supported by the Fujukai Foundation.

²Their theory (with Γ-groups) and ours (with P-groups) are not the same but both admit a more general unifying algebraic treatment [7].

Copyright © 1975, American Mathematical Society

considered as the splitting theorem in codimension ≥ 3 .

2. Construction of W^4 . Let $h: S^1 \to S^1 \times D^2$ be an embedding indicated in Figure 1. Essentially the same embedding $S^1 \to S^1 \times S^2$ was used by Mazur [8] to construct a contractible 4-manifold.

FIGURE 1. Mazur's embedding

Extend h to a framed embedding \overline{h} : $S^1 \times D^2 \longrightarrow S^1 \times D^2$ in such a way that \overline{h} followed by the natural inclusion $S^1 \times D^2 \longrightarrow S^3$ is isotopic to a trivial knot with a trivial framing. Our manifold W^4 is the mapping torus of the framed embedding \overline{h} . More precisely, W^4 is obtained from a product $S^1 \times D^2 \times [0, 1]$ by identifying $(x, \xi) \times \{1\}$ with $\overline{h}(x, \xi) \times \{0\}$ for each $(x, \xi) \in S^1 \times D^2$. Since h is homotopic to the zero cross section $S^1 \times \{0\} \longrightarrow S^1 \times D^2$, W^4 is homotopically equivalent to T^2 .

Moreover, the embedding $h_{(4n)}$ in Theorem 2 is nothing other than $\mathrm{id}_K \times h \colon K^{4n} \times S^1 \longrightarrow K^{4n} \times S^1 \times D^2$, h being Mazur's one.

- 3. Sketch of proof. We first give some generalities. Suppose a compact connected oriented PL 2n+2-manifold V^{2n+2} has the same simple homotopy type as an oriented Poincaré complex of formal dimension $2n \ge 6$. Let $\pi \to \pi'$ denote the associated (onto) homomorphism with V^{2n+2} defined to be $\pi_1(V-L) \to \pi_1(V)$, where L^{2n} is an exterior n-connected (i.e. taut) 2n-submanifold of V^{2n+2} [4]. The kernel of $\pi \to \pi'$ is generated by a (specified) central element t represented by a fiber of the associated S^1 -bundle with a 2-disk bundle neighbourhood N of L^{2n} .
- A $(-1)^n$ -Seifert form over $\pi \to \pi'$ is, by definition, a (not necessarily nonsingular) $(-1)^n t$ -Hermitian form defined over $Z\pi$ which becomes nonsingular over $Z\pi'$ (after tensored with $Z\pi'$).

Then the left $\mathbb{Z}\pi$ -module $\pi_{n+1}(V-L,N-L)$ is proved to carry a $(-1)^n$ -Seifert form whose class in $P_{2n}(\pi \to \pi')^3$, the "Witt group" of $(-1)^n$ -Seifert forms over $\pi \to \pi'$, does not depend on L. Denote the class by $\eta(V) \in P_{2n}(\pi \to \pi')$. Then $\eta(V) = 0$ if and only if V admits a locally flat spine [6].

Now with the notations of §2, the product $W^4 \times CP_2$ has the homotopy type of $T^2 \times CP_2$. The associated homomorphism with it is $\{Z \times Z \times Z \to Z \times Z\} = (Z \to 1) \times Z \times Z$, and the obstruction element $\eta(W^4 \times CP_2)$ is proven to be in the image of the injective homomorphism

$$j_*: P_6((\mathbf{Z} \to 1) \times \mathbf{Z}) \to P_6((\mathbf{Z} \to 1) \times \mathbf{Z} \times \mathbf{Z}).$$

Let $\eta' = j_*^{-1}(\eta(W^4 \times CP_2)).$

LEMMA 1. The element η' of $P_6((\mathbf{Z} \to 1) \times \mathbf{Z})$ is represented by a (-1)-Seifert form (G, λ, μ) given by: $G = \Lambda x_1 \oplus \Lambda x_2, \lambda(x_1, x_2) = -s^{-1}, \mu(x_1) = s - 1, \mu(x_2) = -1$, where $\Lambda = \mathbf{Z}[t, t^{-1}, s, s^{-1}], t$ (or s) denoting the positive generator of the first (or the second) \mathbf{Z} of $(\mathbf{Z} \to 1) \times \mathbf{Z}$.

REMARK. The matrix $(\lambda(x_i, x_j))$ of the (-1)-Seifert form of Lemma 1 is

$$((s-1)-(s^{-1}-1)t, -s^{-1})$$

 $st, -1+t)$

the determinant of which coincides (up to units) with the Alexander polynomial of Mazur's link (Figure 1) calculated by the method of Torres and Fox [9].

LEMMA 2. η' is not in the image of

$$i_*: P_6(\mathbf{Z} \to 1) \to P_6((\mathbf{Z} \to 1) \times \mathbf{Z}).$$

The proof of Theorem 1 goes as follows. Suppose that there were a spine $T_0^2 \subset W^4$. T_0^2 may be assumed to be locally flat except at one point. The product $T_0^2 \times \mathbb{C}P_2$ is a spine of $W^4 \times \mathbb{C}P_2$ whose singularity is of the type (knot cone) $\times \mathbb{C}P_2$. Since $\pi_1(\{pt\} \times \mathbb{C}P_2) = \{1\}$, this singularity is replaced by a knot cone singularity over a knotted 5-sphere in a 7-sphere [4], [6, §6.4]. This implies that the $\eta(W^4 \times \mathbb{C}P_2)$ is in the image of $j_* \circ i_*$, since $P_6(\mathbb{Z} \longrightarrow 1)$ is isomorphic to the (7, 5)-knot cobordism group [6]. However, this contradicts Lemma 2.

³This notation slightly differs from the original one [6].

REMARK. If we start the construction with the embedding indicated in Figure 2, we will obtain $W^{4'}$ which admits a locally flat spine.

FIGURE 2. False embedding

REFERENCES

- 1. S. E. Cappell and J. L. Shaneson, The codimension two placement problem and homology equivalent manifolds, Ann. of Math. (2) 99 (1974), 277-348.
 - 2. ——, Totally spineless manifolds, Topology (to appear).
- 3. F. T. Farrell and W. C. Hsiang, A geometric interpretation of the Künneth formula for algebraic K-theory, Bull. Amer. Math. Soc. 74 (1968), 548-553. MR 37 #274
- 4. M. Kato and Y. Matsumoto, Simply connected surgery of submanifolds in co-dimension two. I, J. Math. Soc. Japan 24 (1972), 586-608. MR 46 #6369.
- 5. Y. Matsumoto, Surgery and singularities in codimension two, Proc. Japan Acad. 47 (1971), 153-156. MR 45 #6008.
- 6. ——, Knot cobordism groups and surgery in codimension two, J. Fac. Sci. Univ. Tokyo, Sect. IA 20 (1973), 253-317.
- 7. ——, Some relative notions in the theory of Hermitian forms, Proc. Japan Acad. 49 (1973), 583-587.
- 8. B. Mazur, A note on some contractible 4-manifolds, Ann. of Math. (2) 73 (1961), 221-228. MR 23 #A2873.
- 9. G. Torres and R. H. Fox, Dual presentation of the group of a knot, Ann. of Math. (2) 59 (1954), 211-218. MR 15, 979.

DEPARTMENT OF MATHEMATICS, COLLEGE OF GENERAL EDUCATION, UNIVERSITY OF TOKYO, KOMABA, MEGUROKU, TOKYO, 153, JAPAN